MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvinc Structured version   Visualization version   Unicode version

Theorem eqvinc 3330
Description: A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Thierry Arnoux, 23-Jan-2022.)
Hypothesis
Ref Expression
eqvinc.1  |-  A  e. 
_V
Assertion
Ref Expression
eqvinc  |-  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem eqvinc
StepHypRef Expression
1 eqvinc.1 . 2  |-  A  e. 
_V
2 eqvincg 3329 . 2  |-  ( A  e.  _V  ->  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) ) )
31, 2ax-mp 5 1  |-  ( A  =  B  <->  E. x
( x  =  A  /\  x  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  eqvincf  3331  dff13  6512  f1eqcocnv  6556  tfindsg  7060  findsg  7093  findcard2s  8201  indpi  9729  fcoinvbr  29419  dfrdg4  32058  bj-elsngl  32956
  Copyright terms: Public domain W3C validator