Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funcnv5mpt Structured version   Visualization version   Unicode version

Theorem funcnv5mpt 29469
Description: Two ways to say that a function in maps-to notation is single-rooted. (Contributed by Thierry Arnoux, 1-Mar-2017.)
Hypotheses
Ref Expression
funcnvmpt.0  |-  F/ x ph
funcnvmpt.1  |-  F/_ x A
funcnvmpt.2  |-  F/_ x F
funcnvmpt.3  |-  F  =  ( x  e.  A  |->  B )
funcnvmpt.4  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
funcnv5mpt.1  |-  ( x  =  z  ->  B  =  C )
Assertion
Ref Expression
funcnv5mpt  |-  ( ph  ->  ( Fun  `' F  <->  A. x  e.  A  A. z  e.  A  (
x  =  z  \/  B  =/=  C ) ) )
Distinct variable groups:    x, z    ph, z    z, A    z, B    x, C
Allowed substitution hints:    ph( x)    A( x)    B( x)    C( z)    F( x, z)    V( x, z)

Proof of Theorem funcnv5mpt
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 funcnvmpt.0 . . 3  |-  F/ x ph
2 funcnvmpt.1 . . 3  |-  F/_ x A
3 funcnvmpt.2 . . 3  |-  F/_ x F
4 funcnvmpt.3 . . 3  |-  F  =  ( x  e.  A  |->  B )
5 funcnvmpt.4 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
61, 2, 3, 4, 5funcnvmpt 29468 . 2  |-  ( ph  ->  ( Fun  `' F  <->  A. y E* x  e.  A  y  =  B ) )
7 nne 2798 . . . . . . . . 9  |-  ( -.  B  =/=  C  <->  B  =  C )
8 eqvincg 3329 . . . . . . . . . 10  |-  ( B  e.  V  ->  ( B  =  C  <->  E. y
( y  =  B  /\  y  =  C ) ) )
95, 8syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  A )  ->  ( B  =  C  <->  E. y
( y  =  B  /\  y  =  C ) ) )
107, 9syl5bb 272 . . . . . . . 8  |-  ( (
ph  /\  x  e.  A )  ->  ( -.  B  =/=  C  <->  E. y ( y  =  B  /\  y  =  C ) ) )
1110imbi1d 331 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
( -.  B  =/= 
C  ->  x  =  z )  <->  ( E. y ( y  =  B  /\  y  =  C )  ->  x  =  z ) ) )
12 orcom 402 . . . . . . . 8  |-  ( ( x  =  z  \/  B  =/=  C )  <-> 
( B  =/=  C  \/  x  =  z
) )
13 df-or 385 . . . . . . . 8  |-  ( ( B  =/=  C  \/  x  =  z )  <->  ( -.  B  =/=  C  ->  x  =  z ) )
1412, 13bitri 264 . . . . . . 7  |-  ( ( x  =  z  \/  B  =/=  C )  <-> 
( -.  B  =/= 
C  ->  x  =  z ) )
15 19.23v 1902 . . . . . . 7  |-  ( A. y ( ( y  =  B  /\  y  =  C )  ->  x  =  z )  <->  ( E. y ( y  =  B  /\  y  =  C )  ->  x  =  z ) )
1611, 14, 153bitr4g 303 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  =  z  \/  B  =/=  C
)  <->  A. y ( ( y  =  B  /\  y  =  C )  ->  x  =  z ) ) )
1716ralbidv 2986 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  A  ( x  =  z  \/  B  =/=  C
)  <->  A. z  e.  A  A. y ( ( y  =  B  /\  y  =  C )  ->  x  =  z ) ) )
18 ralcom4 3224 . . . . 5  |-  ( A. z  e.  A  A. y ( ( y  =  B  /\  y  =  C )  ->  x  =  z )  <->  A. y A. z  e.  A  ( ( y  =  B  /\  y  =  C )  ->  x  =  z ) )
1917, 18syl6bb 276 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( A. z  e.  A  ( x  =  z  \/  B  =/=  C
)  <->  A. y A. z  e.  A  ( (
y  =  B  /\  y  =  C )  ->  x  =  z ) ) )
201, 19ralbida 2982 . . 3  |-  ( ph  ->  ( A. x  e.  A  A. z  e.  A  ( x  =  z  \/  B  =/= 
C )  <->  A. x  e.  A  A. y A. z  e.  A  ( ( y  =  B  /\  y  =  C )  ->  x  =  z ) ) )
21 nfcv 2764 . . . . . 6  |-  F/_ z A
22 nfv 1843 . . . . . 6  |-  F/ x  y  =  C
23 funcnv5mpt.1 . . . . . . 7  |-  ( x  =  z  ->  B  =  C )
2423eqeq2d 2632 . . . . . 6  |-  ( x  =  z  ->  (
y  =  B  <->  y  =  C ) )
252, 21, 22, 24rmo4f 29337 . . . . 5  |-  ( E* x  e.  A  y  =  B  <->  A. x  e.  A  A. z  e.  A  ( (
y  =  B  /\  y  =  C )  ->  x  =  z ) )
2625albii 1747 . . . 4  |-  ( A. y E* x  e.  A  y  =  B  <->  A. y A. x  e.  A  A. z  e.  A  ( ( y  =  B  /\  y  =  C )  ->  x  =  z ) )
27 ralcom4 3224 . . . 4  |-  ( A. x  e.  A  A. y A. z  e.  A  ( ( y  =  B  /\  y  =  C )  ->  x  =  z )  <->  A. y A. x  e.  A  A. z  e.  A  ( ( y  =  B  /\  y  =  C )  ->  x  =  z ) )
2826, 27bitr4i 267 . . 3  |-  ( A. y E* x  e.  A  y  =  B  <->  A. x  e.  A  A. y A. z  e.  A  ( ( y  =  B  /\  y  =  C )  ->  x  =  z ) )
2920, 28syl6bbr 278 . 2  |-  ( ph  ->  ( A. x  e.  A  A. z  e.  A  ( x  =  z  \/  B  =/= 
C )  <->  A. y E* x  e.  A  y  =  B )
)
306, 29bitr4d 271 1  |-  ( ph  ->  ( Fun  `' F  <->  A. x  e.  A  A. z  e.  A  (
x  =  z  \/  B  =/=  C ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704   F/wnf 1708    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   E*wrmo 2915    |-> cmpt 4729   `'ccnv 5113   Fun wfun 5882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  funcnv4mpt  29470
  Copyright terms: Public domain W3C validator