MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eupicka Structured version   Visualization version   Unicode version

Theorem eupicka 2537
Description: Version of eupick 2536 with closed formulas. (Contributed by NM, 6-Sep-2008.)
Assertion
Ref Expression
eupicka  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)

Proof of Theorem eupicka
StepHypRef Expression
1 nfeu1 2480 . . 3  |-  F/ x E! x ph
2 nfe1 2027 . . 3  |-  F/ x E. x ( ph  /\  ps )
31, 2nfan 1828 . 2  |-  F/ x
( E! x ph  /\ 
E. x ( ph  /\ 
ps ) )
4 eupick 2536 . 2  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  ( ph  ->  ps ) )
53, 4alrimi 2082 1  |-  ( ( E! x ph  /\  E. x ( ph  /\  ps ) )  ->  A. x
( ph  ->  ps )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704   E!weu 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  eupickbi  2539  frege124d  38053  sbiota1  38635
  Copyright terms: Public domain W3C validator