| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbiota1 | Structured version Visualization version Unicode version | ||
| Description: Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.) |
| Ref | Expression |
|---|---|
| sbiota1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eu 2474 |
. . . 4
| |
| 2 | 1 | biimpi 206 |
. . 3
|
| 3 | iota4 5869 |
. . 3
| |
| 4 | iotaval 5862 |
. . . . . 6
| |
| 5 | 4 | eqcomd 2628 |
. . . . 5
|
| 6 | spsbim 2394 |
. . . . . . . 8
| |
| 7 | sbsbc 3439 |
. . . . . . . 8
| |
| 8 | sbsbc 3439 |
. . . . . . . 8
| |
| 9 | 6, 7, 8 | 3imtr3g 284 |
. . . . . . 7
|
| 10 | dfsbcq 3437 |
. . . . . . . 8
| |
| 11 | dfsbcq 3437 |
. . . . . . . 8
| |
| 12 | 10, 11 | imbi12d 334 |
. . . . . . 7
|
| 13 | 9, 12 | syl5ib 234 |
. . . . . 6
|
| 14 | 13 | com23 86 |
. . . . 5
|
| 15 | 5, 14 | syl 17 |
. . . 4
|
| 16 | 15 | exlimiv 1858 |
. . 3
|
| 17 | 2, 3, 16 | sylc 65 |
. 2
|
| 18 | iotaexeu 38619 |
. . . . 5
| |
| 19 | 10, 11 | anbi12d 747 |
. . . . . . . 8
|
| 20 | 19 | imbi1d 331 |
. . . . . . 7
|
| 21 | sbcan 3478 |
. . . . . . . 8
| |
| 22 | spesbc 3521 |
. . . . . . . 8
| |
| 23 | 21, 22 | sylbir 225 |
. . . . . . 7
|
| 24 | 20, 23 | vtoclg 3266 |
. . . . . 6
|
| 25 | 24 | expd 452 |
. . . . 5
|
| 26 | 18, 3, 25 | sylc 65 |
. . . 4
|
| 27 | 26 | anc2li 580 |
. . 3
|
| 28 | eupicka 2537 |
. . 3
| |
| 29 | 27, 28 | syl6 35 |
. 2
|
| 30 | 17, 29 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: sbaniota 38636 |
| Copyright terms: Public domain | W3C validator |