MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-un Structured version   Visualization version   Unicode version

Theorem ex-un 27281
Description: Example for df-un 3579. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-un  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }

Proof of Theorem ex-un
StepHypRef Expression
1 unass 3770 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
2 snsspr1 4345 . . . . 5  |-  { 1 }  C_  { 1 ,  3 }
3 ssequn2 3786 . . . . 5  |-  ( { 1 }  C_  { 1 ,  3 }  <->  ( {
1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 } )
42, 3mpbi 220 . . . 4  |-  ( { 1 ,  3 }  u.  { 1 } )  =  { 1 ,  3 }
54uneq1i 3763 . . 3  |-  ( ( { 1 ,  3 }  u.  { 1 } )  u.  {
8 } )  =  ( { 1 ,  3 }  u.  {
8 } )
61, 5eqtr3i 2646 . 2  |-  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )  =  ( { 1 ,  3 }  u.  {
8 } )
7 df-pr 4180 . . 3  |-  { 1 ,  8 }  =  ( { 1 }  u.  { 8 } )
87uneq2i 3764 . 2  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  ( { 1 ,  3 }  u.  ( { 1 }  u.  { 8 } ) )
9 df-tp 4182 . 2  |-  { 1 ,  3 ,  8 }  =  ( { 1 ,  3 }  u.  { 8 } )
106, 8, 93eqtr4i 2654 1  |-  ( { 1 ,  3 }  u.  { 1 ,  8 } )  =  { 1 ,  3 ,  8 }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    u. cun 3572    C_ wss 3574   {csn 4177   {cpr 4179   {ctp 4181   1c1 9937   3c3 11071   8c8 11076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-un 3579  df-in 3581  df-ss 3588  df-pr 4180  df-tp 4182
This theorem is referenced by:  ex-uni  27283
  Copyright terms: Public domain W3C validator