MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exan Structured version   Visualization version   Unicode version

Theorem exan 1788
Description: Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) Reduce axiom dependencies. (Revised by BJ, 7-Jul-2021.) (Proof shortened by Wolf Lammen, 8-Oct-2021.)
Hypothesis
Ref Expression
exan.1  |-  ( E. x ph  /\  ps )
Assertion
Ref Expression
exan  |-  E. x
( ph  /\  ps )

Proof of Theorem exan
StepHypRef Expression
1 exan.1 . . 3  |-  ( E. x ph  /\  ps )
21simpli 474 . 2  |-  E. x ph
31simpri 478 . . . 4  |-  ps
4 pm3.21 464 . . . 4  |-  ( ps 
->  ( ph  ->  ( ph  /\  ps ) ) )
53, 4ax-mp 5 . . 3  |-  ( ph  ->  ( ph  /\  ps ) )
65eximi 1762 . 2  |-  ( E. x ph  ->  E. x
( ph  /\  ps )
)
72, 6ax-mp 5 1  |-  E. x
( ph  /\  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   E.wex 1704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by:  bm1.3ii  4784  ac6s6f  33981  fnchoice  39188
  Copyright terms: Public domain W3C validator