MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exdistrf Structured version   Visualization version   Unicode version

Theorem exdistrf 2333
Description: Distribution of existential quantifiers, with a bound-variable hypothesis saying that  y is not free in  ph, but  x can be free in  ph (and there is no distinct variable condition on  x and  y). (Contributed by Mario Carneiro, 20-Mar-2013.) (Proof shortened by Wolf Lammen, 14-May-2018.)
Hypothesis
Ref Expression
exdistrf.1  |-  ( -. 
A. x  x  =  y  ->  F/ y ph )
Assertion
Ref Expression
exdistrf  |-  ( E. x E. y (
ph  /\  ps )  ->  E. x ( ph  /\ 
E. y ps )
)

Proof of Theorem exdistrf
StepHypRef Expression
1 nfe1 2027 . 2  |-  F/ x E. x ( ph  /\  E. y ps )
2 19.8a 2052 . . . . . 6  |-  ( ps 
->  E. y ps )
32anim2i 593 . . . . 5  |-  ( (
ph  /\  ps )  ->  ( ph  /\  E. y ps ) )
43eximi 1762 . . . 4  |-  ( E. y ( ph  /\  ps )  ->  E. y
( ph  /\  E. y ps ) )
5 biidd 252 . . . . 5  |-  ( A. x  x  =  y  ->  ( ( ph  /\  E. y ps )  <->  ( ph  /\ 
E. y ps )
) )
65drex1 2327 . . . 4  |-  ( A. x  x  =  y  ->  ( E. x (
ph  /\  E. y ps )  <->  E. y ( ph  /\ 
E. y ps )
) )
74, 6syl5ibr 236 . . 3  |-  ( A. x  x  =  y  ->  ( E. y (
ph  /\  ps )  ->  E. x ( ph  /\ 
E. y ps )
) )
8 19.40 1797 . . . 4  |-  ( E. y ( ph  /\  ps )  ->  ( E. y ph  /\  E. y ps ) )
9 exdistrf.1 . . . . . 6  |-  ( -. 
A. x  x  =  y  ->  F/ y ph )
10919.9d 2070 . . . . 5  |-  ( -. 
A. x  x  =  y  ->  ( E. y ph  ->  ph ) )
1110anim1d 588 . . . 4  |-  ( -. 
A. x  x  =  y  ->  ( ( E. y ph  /\  E. y ps )  ->  ( ph  /\  E. y ps ) ) )
12 19.8a 2052 . . . 4  |-  ( (
ph  /\  E. y ps )  ->  E. x
( ph  /\  E. y ps ) )
138, 11, 12syl56 36 . . 3  |-  ( -. 
A. x  x  =  y  ->  ( E. y ( ph  /\  ps )  ->  E. x
( ph  /\  E. y ps ) ) )
147, 13pm2.61i 176 . 2  |-  ( E. y ( ph  /\  ps )  ->  E. x
( ph  /\  E. y ps ) )
151, 14exlimi 2086 1  |-  ( E. x E. y (
ph  /\  ps )  ->  E. x ( ph  /\ 
E. y ps )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by:  oprabid  6677
  Copyright terms: Public domain W3C validator