![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimddvf | Structured version Visualization version Unicode version |
Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
Ref | Expression |
---|---|
exlimddvf.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimddvf.2 |
![]() ![]() ![]() ![]() |
exlimddvf.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
exlimddvf.4 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
exlimddvf |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimddvf.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | exlimddvf.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | exlimddvf.4 |
. . 3
![]() ![]() ![]() ![]() | |
4 | exlimddvf.3 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | expcom 451 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 3, 5 | exlimd 2087 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 6 | mpan9 486 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
This theorem is referenced by: exlimddvfi 33927 |
Copyright terms: Public domain | W3C validator |