| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exlimddvf | Structured version Visualization version Unicode version | ||
| Description: A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
| Ref | Expression |
|---|---|
| exlimddvf.1 |
|
| exlimddvf.2 |
|
| exlimddvf.3 |
|
| exlimddvf.4 |
|
| Ref | Expression |
|---|---|
| exlimddvf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimddvf.1 |
. 2
| |
| 2 | exlimddvf.2 |
. . 3
| |
| 3 | exlimddvf.4 |
. . 3
| |
| 4 | exlimddvf.3 |
. . . 4
| |
| 5 | 4 | expcom 451 |
. . 3
|
| 6 | 2, 3, 5 | exlimd 2087 |
. 2
|
| 7 | 1, 6 | mpan9 486 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: exlimddvfi 33927 |
| Copyright terms: Public domain | W3C validator |