| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falseral0 | Structured version Visualization version Unicode version | ||
| Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.) |
| Ref | Expression |
|---|---|
| falseral0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2917 |
. 2
| |
| 2 | 19.26 1798 |
. . 3
| |
| 3 | con3 149 |
. . . . . . 7
| |
| 4 | 3 | impcom 446 |
. . . . . 6
|
| 5 | 4 | alimi 1739 |
. . . . 5
|
| 6 | alnex 1706 |
. . . . 5
| |
| 7 | 5, 6 | sylib 208 |
. . . 4
|
| 8 | notnotb 304 |
. . . . 5
| |
| 9 | neq0 3930 |
. . . . 5
| |
| 10 | 8, 9 | xchbinx 324 |
. . . 4
|
| 11 | 7, 10 | sylibr 224 |
. . 3
|
| 12 | 2, 11 | sylbir 225 |
. 2
|
| 13 | 1, 12 | sylan2b 492 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: uvtxa01vtx0 26297 |
| Copyright terms: Public domain | W3C validator |