![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > falseral0 | Structured version Visualization version GIF version |
Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.) |
Ref | Expression |
---|---|
falseral0 | ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2917 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 19.26 1798 | . . 3 ⊢ (∀𝑥(¬ 𝜑 ∧ (𝑥 ∈ 𝐴 → 𝜑)) ↔ (∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) | |
3 | con3 149 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (¬ 𝜑 → ¬ 𝑥 ∈ 𝐴)) | |
4 | 3 | impcom 446 | . . . . . 6 ⊢ ((¬ 𝜑 ∧ (𝑥 ∈ 𝐴 → 𝜑)) → ¬ 𝑥 ∈ 𝐴) |
5 | 4 | alimi 1739 | . . . . 5 ⊢ (∀𝑥(¬ 𝜑 ∧ (𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥 ¬ 𝑥 ∈ 𝐴) |
6 | alnex 1706 | . . . . 5 ⊢ (∀𝑥 ¬ 𝑥 ∈ 𝐴 ↔ ¬ ∃𝑥 𝑥 ∈ 𝐴) | |
7 | 5, 6 | sylib 208 | . . . 4 ⊢ (∀𝑥(¬ 𝜑 ∧ (𝑥 ∈ 𝐴 → 𝜑)) → ¬ ∃𝑥 𝑥 ∈ 𝐴) |
8 | notnotb 304 | . . . . 5 ⊢ (𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅) | |
9 | neq0 3930 | . . . . 5 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
10 | 8, 9 | xchbinx 324 | . . . 4 ⊢ (𝐴 = ∅ ↔ ¬ ∃𝑥 𝑥 ∈ 𝐴) |
11 | 7, 10 | sylibr 224 | . . 3 ⊢ (∀𝑥(¬ 𝜑 ∧ (𝑥 ∈ 𝐴 → 𝜑)) → 𝐴 = ∅) |
12 | 2, 11 | sylbir 225 | . 2 ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) → 𝐴 = ∅) |
13 | 1, 12 | sylan2b 492 | 1 ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜑) → 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∀wal 1481 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∀wral 2912 ∅c0 3915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-nul 3916 |
This theorem is referenced by: uvtxa01vtx0 26297 |
Copyright terms: Public domain | W3C validator |