MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falseral0 Structured version   Visualization version   GIF version

Theorem falseral0 4081
Description: A false statement can only be true for elements of an empty set. (Contributed by AV, 30-Oct-2020.)
Assertion
Ref Expression
falseral0 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥𝐴 𝜑) → 𝐴 = ∅)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem falseral0
StepHypRef Expression
1 df-ral 2917 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 19.26 1798 . . 3 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) ↔ (∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥𝐴𝜑)))
3 con3 149 . . . . . . 7 ((𝑥𝐴𝜑) → (¬ 𝜑 → ¬ 𝑥𝐴))
43impcom 446 . . . . . 6 ((¬ 𝜑 ∧ (𝑥𝐴𝜑)) → ¬ 𝑥𝐴)
54alimi 1739 . . . . 5 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → ∀𝑥 ¬ 𝑥𝐴)
6 alnex 1706 . . . . 5 (∀𝑥 ¬ 𝑥𝐴 ↔ ¬ ∃𝑥 𝑥𝐴)
75, 6sylib 208 . . . 4 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → ¬ ∃𝑥 𝑥𝐴)
8 notnotb 304 . . . . 5 (𝐴 = ∅ ↔ ¬ ¬ 𝐴 = ∅)
9 neq0 3930 . . . . 5 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
108, 9xchbinx 324 . . . 4 (𝐴 = ∅ ↔ ¬ ∃𝑥 𝑥𝐴)
117, 10sylibr 224 . . 3 (∀𝑥𝜑 ∧ (𝑥𝐴𝜑)) → 𝐴 = ∅)
122, 11sylbir 225 . 2 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥(𝑥𝐴𝜑)) → 𝐴 = ∅)
131, 12sylan2b 492 1 ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥𝐴 𝜑) → 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  wral 2912  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by:  uvtxa01vtx0  26297
  Copyright terms: Public domain W3C validator