| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fint | Structured version Visualization version Unicode version | ||
| Description: Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| fint.1 |
|
| Ref | Expression |
|---|---|
| fint |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4493 |
. . . 4
| |
| 2 | 1 | anbi2i 730 |
. . 3
|
| 3 | fint.1 |
. . . 4
| |
| 4 | r19.28zv 4066 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | bitr4i 267 |
. 2
|
| 7 | df-f 5892 |
. 2
| |
| 8 | df-f 5892 |
. . 3
| |
| 9 | 8 | ralbii 2980 |
. 2
|
| 10 | 6, 7, 9 | 3bitr4i 292 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-int 4476 df-f 5892 |
| This theorem is referenced by: chintcli 28190 |
| Copyright terms: Public domain | W3C validator |