MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fint Structured version   Visualization version   Unicode version

Theorem fint 6084
Description: Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Hypothesis
Ref Expression
fint.1  |-  B  =/=  (/)
Assertion
Ref Expression
fint  |-  ( F : A --> |^| B  <->  A. x  e.  B  F : A --> x )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fint
StepHypRef Expression
1 ssint 4493 . . . 4  |-  ( ran 
F  C_  |^| B  <->  A. x  e.  B  ran  F  C_  x )
21anbi2i 730 . . 3  |-  ( ( F  Fn  A  /\  ran  F  C_  |^| B )  <-> 
( F  Fn  A  /\  A. x  e.  B  ran  F  C_  x )
)
3 fint.1 . . . 4  |-  B  =/=  (/)
4 r19.28zv 4066 . . . 4  |-  ( B  =/=  (/)  ->  ( A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x )  <->  ( F  Fn  A  /\  A. x  e.  B  ran  F 
C_  x ) ) )
53, 4ax-mp 5 . . 3  |-  ( A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x )  <->  ( F  Fn  A  /\  A. x  e.  B  ran  F 
C_  x ) )
62, 5bitr4i 267 . 2  |-  ( ( F  Fn  A  /\  ran  F  C_  |^| B )  <->  A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x
) )
7 df-f 5892 . 2  |-  ( F : A --> |^| B  <->  ( F  Fn  A  /\  ran  F  C_  |^| B ) )
8 df-f 5892 . . 3  |-  ( F : A --> x  <->  ( F  Fn  A  /\  ran  F  C_  x ) )
98ralbii 2980 . 2  |-  ( A. x  e.  B  F : A --> x  <->  A. x  e.  B  ( F  Fn  A  /\  ran  F  C_  x ) )
106, 7, 93bitr4i 292 1  |-  ( F : A --> |^| B  <->  A. x  e.  B  F : A --> x )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    =/= wne 2794   A.wral 2912    C_ wss 3574   (/)c0 3915   |^|cint 4475   ran crn 5115    Fn wfn 5883   -->wf 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-int 4476  df-f 5892
This theorem is referenced by:  chintcli  28190
  Copyright terms: Public domain W3C validator