HomeHome Metamath Proof Explorer
Theorem List (p. 61 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 6001-6100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfnresdisj 6001 A function restricted to a class disjoint with its domain is empty. (Contributed by NM, 23-Sep-2004.)
 |-  ( F  Fn  A  ->  ( ( A  i^i  B )  =  (/)  <->  ( F  |`  B )  =  (/) ) )
 
Theorem2elresin 6002 Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
 |-  ( ( F  Fn  A  /\  G  Fn  B )  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G )  <->  ( <. x ,  y >.  e.  ( F  |`  ( A  i^i  B ) )  /\  <. x ,  z >.  e.  ( G  |`  ( A  i^i  B ) ) ) ) )
 
Theoremfnssresb 6003 Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
 |-  ( F  Fn  A  ->  ( ( F  |`  B )  Fn  B  <->  B  C_  A ) )
 
Theoremfnssres 6004 Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
 |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( F  |`  B )  Fn  B )
 
Theoremfnresin1 6005 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
 |-  ( F  Fn  A  ->  ( F  |`  ( A  i^i  B ) )  Fn  ( A  i^i  B ) )
 
Theoremfnresin2 6006 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
 |-  ( F  Fn  A  ->  ( F  |`  ( B  i^i  A ) )  Fn  ( B  i^i  A ) )
 
Theoremfnres 6007* An equivalence for functionality of a restriction. Compare dffun8 5916. (Contributed by Mario Carneiro, 20-May-2015.)
 |-  ( ( F  |`  A )  Fn  A  <->  A. x  e.  A  E! y  x F y )
 
Theoremfnresi 6008 Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
 |-  (  _I  |`  A )  Fn  A
 
Theoremidssxp 6009 A diagonal set as a subset of a Cartesian product. (Contributed by Thierry Arnoux, 29-Dec-2019.)
 |-  (  _I  |`  A ) 
 C_  ( A  X.  A )
 
Theoremfnima 6010 The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F  Fn  A  ->  ( F " A )  =  ran  F )
 
Theoremfn0 6011 A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F  Fn  (/)  <->  F  =  (/) )
 
Theoremfnimadisj 6012 A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
 |-  ( ( F  Fn  A  /\  ( A  i^i  C )  =  (/) )  ->  ( F " C )  =  (/) )
 
Theoremfnimaeq0 6013 Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 37621. (Contributed by Stefan O'Rear, 21-Jan-2015.)
 |-  ( ( F  Fn  A  /\  B  C_  A )  ->  ( ( F
 " B )  =  (/) 
 <->  B  =  (/) ) )
 
Theoremdfmpt3 6014 Alternate definition for the "maps to" notation df-mpt 4730. (Contributed by Mario Carneiro, 30-Dec-2016.)
 |-  ( x  e.  A  |->  B )  =  U_ x  e.  A  ( { x }  X.  { B }
 )
 
Theoremmptfnf 6015 The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.)
 |-  F/_ x A   =>    |-  ( A. x  e.  A  B  e.  _V  <->  ( x  e.  A  |->  B )  Fn  A )
 
Theoremfnmptf 6016 The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.)
 |-  F/_ x A   =>    |-  ( A. x  e.  A  B  e.  V  ->  ( x  e.  A  |->  B )  Fn  A )
 
Theoremfnopabg 6017* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
 |-  F  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }   =>    |-  ( A. x  e.  A  E! y ph  <->  F  Fn  A )
 
Theoremfnopab 6018* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
 |-  ( x  e.  A  ->  E! y ph )   &    |-  F  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }   =>    |-  F  Fn  A
 
Theoremmptfng 6019* The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A )
 
Theoremfnmpt 6020* The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
 |-  F  =  ( x  e.  A  |->  B )   =>    |-  ( A. x  e.  A  B  e.  V  ->  F  Fn  A )
 
Theoremmpt0 6021 A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  ( x  e.  (/)  |->  A )  =  (/)
 
Theoremfnmpti 6022* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   &    |-  F  =  ( x  e.  A  |->  B )   =>    |-  F  Fn  A
 
Theoremdmmpti 6023* Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.)
 |-  B  e.  _V   &    |-  F  =  ( x  e.  A  |->  B )   =>    |- 
 dom  F  =  A
 
Theoremdmmptd 6024* The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  A  =  ( x  e.  B  |->  C )   &    |-  ( ( ph  /\  x  e.  B )  ->  C  e.  V )   =>    |-  ( ph  ->  dom  A  =  B )
 
Theoremmptun 6025 Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
 |-  ( x  e.  ( A  u.  B )  |->  C )  =  ( ( x  e.  A  |->  C )  u.  ( x  e.  B  |->  C ) )
 
Theoremfeq1 6026 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
 |-  ( F  =  G  ->  ( F : A --> B 
 <->  G : A --> B ) )
 
Theoremfeq2 6027 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( F : A --> C 
 <->  F : B --> C ) )
 
Theoremfeq3 6028 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
 |-  ( A  =  B  ->  ( F : C --> A 
 <->  F : C --> B ) )
 
Theoremfeq23 6029 Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( A  =  C  /\  B  =  D )  ->  ( F : A
 --> B  <->  F : C --> D ) )
 
Theoremfeq1d 6030 Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
 |-  ( ph  ->  F  =  G )   =>    |-  ( ph  ->  ( F : A --> B  <->  G : A --> B ) )
 
Theoremfeq2d 6031 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F : A --> C  <->  F : B --> C ) )
 
Theoremfeq3d 6032 Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F : X --> A  <->  F : X --> B ) )
 
Theoremfeq12d 6033 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( F : A --> C  <->  G : B --> C ) )
 
Theoremfeq123d 6034 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  F  =  G )   &    |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( F : A --> C  <->  G : B --> D ) )
 
Theoremfeq123 6035 Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
 |-  ( ( F  =  G  /\  A  =  C  /\  B  =  D ) 
 ->  ( F : A --> B 
 <->  G : C --> D ) )
 
Theoremfeq1i 6036 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  F  =  G   =>    |-  ( F : A
 --> B  <->  G : A --> B )
 
Theoremfeq2i 6037 Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
 |-  A  =  B   =>    |-  ( F : A
 --> C  <->  F : B --> C )
 
Theoremfeq12i 6038 Equality inference for functions. (Contributed by AV, 7-Feb-2021.)
 |-  F  =  G   &    |-  A  =  B   =>    |-  ( F : A --> C 
 <->  G : B --> C )
 
Theoremfeq23i 6039 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  A  =  C   &    |-  B  =  D   =>    |-  ( F : A --> B 
 <->  F : C --> D )
 
Theoremfeq23d 6040 Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
 |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  ( F : A --> B  <->  F : C --> D ) )
 
Theoremnff 6041 Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
 |-  F/_ x F   &    |-  F/_ x A   &    |-  F/_ x B   =>    |- 
 F/ x  F : A
 --> B
 
Theoremsbcfng 6042* Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  ( X  e.  V  ->  ( [. X  /  x ]. F  Fn  A  <->  [_ X  /  x ]_ F  Fn  [_ X  /  x ]_ A ) )
 
Theoremsbcfg 6043* Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  ( X  e.  V  ->  ( [. X  /  x ]. F : A --> B 
 <-> 
 [_ X  /  x ]_ F : [_ X  /  x ]_ A --> [_ X  /  x ]_ B ) )
 
Theoremelimf 6044 Eliminate a mapping hypothesis for the weak deduction theorem dedth 4139, when a special case  G : A --> B is provable, in order to convert  F : A --> B from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.)
 |-  G : A --> B   =>    |-  if ( F : A --> B ,  F ,  G ) : A --> B
 
Theoremffn 6045 A mapping is a function with domain. (Contributed by NM, 2-Aug-1994.)
 |-  ( F : A --> B  ->  F  Fn  A )
 
Theoremffnd 6046 A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  F  Fn  A )
 
Theoremdffn2 6047 Any function is a mapping into  _V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F  Fn  A  <->  F : A --> _V )
 
Theoremffun 6048 A mapping is a function. (Contributed by NM, 3-Aug-1994.)
 |-  ( F : A --> B  ->  Fun  F )
 
Theoremffund 6049 A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  Fun 
 F )
 
Theoremfrel 6050 A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
 |-  ( F : A --> B  ->  Rel  F )
 
Theoremfdm 6051 The domain of a mapping. (Contributed by NM, 2-Aug-1994.)
 |-  ( F : A --> B  ->  dom  F  =  A )
 
Theoremfdmi 6052 The domain of a mapping. (Contributed by NM, 28-Jul-2008.)
 |-  F : A --> B   =>    |-  dom  F  =  A
 
Theoremfrn 6053 The range of a mapping. (Contributed by NM, 3-Aug-1994.)
 |-  ( F : A --> B  ->  ran  F  C_  B )
 
Theoremdffn3 6054 A function maps to its range. (Contributed by NM, 1-Sep-1999.)
 |-  ( F  Fn  A  <->  F : A --> ran  F )
 
Theoremffrn 6055 A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
 |-  ( F : A --> B  ->  F : A --> ran  F )
 
Theoremfss 6056 Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( F : A
 --> B  /\  B  C_  C )  ->  F : A
 --> C )
 
Theoremfssd 6057 Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  F : A --> C )
 
Theoremfco 6058 Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( ( F : B
 --> C  /\  G : A
 --> B )  ->  ( F  o.  G ) : A --> C )
 
Theoremfco2 6059 Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
 |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
 
Theoremfssxp 6060 A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
 
Theoremfunssxp 6061 Two ways of specifying a partial function from  A to  B. (Contributed by NM, 13-Nov-2007.)
 |-  ( ( Fun  F  /\  F  C_  ( A  X.  B ) )  <->  ( F : dom  F --> B  /\  dom  F 
 C_  A ) )
 
Theoremffdm 6062 A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
 |-  ( F : A --> B  ->  ( F : dom  F --> B  /\  dom  F 
 C_  A ) )
 
Theoremffdmd 6063 The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  F : A --> B )   =>    |-  ( ph  ->  F : dom  F --> B )
 
Theoremfdmrn 6064 A different way to write  F is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
 |-  ( Fun  F  <->  F : dom  F --> ran  F )
 
Theoremopelf 6065 The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
 |-  ( ( F : A
 --> B  /\  <. C ,  D >.  e.  F ) 
 ->  ( C  e.  A  /\  D  e.  B ) )
 
Theoremfun 6066 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
 |-  ( ( ( F : A --> C  /\  G : B --> D ) 
 /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  D ) )
 
Theoremfun2 6067 The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
 |-  ( ( ( F : A --> C  /\  G : B --> C ) 
 /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )
 
Theoremfun2d 6068 The union of functions with disjoint domains is a function, deduction version of fun2 6067. (Contributed by AV, 11-Oct-2020.) (Revised by AV, 24-Oct-2021.)
 |-  ( ph  ->  F : A --> C )   &    |-  ( ph  ->  G : B --> C )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   =>    |-  ( ph  ->  ( F  u.  G ) : ( A  u.  B )
 --> C )
 
Theoremfnfco 6069 Composition of two functions. (Contributed by NM, 22-May-2006.)
 |-  ( ( F  Fn  A  /\  G : B --> A )  ->  ( F  o.  G )  Fn  B )
 
Theoremfssres 6070 Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.)
 |-  ( ( F : A
 --> B  /\  C  C_  A )  ->  ( F  |`  C ) : C --> B )
 
Theoremfssresd 6071 Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  C  C_  A )   =>    |-  ( ph  ->  ( F  |`  C ) : C --> B )
 
Theoremfssres2 6072 Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
 |-  ( ( ( F  |`  A ) : A --> B  /\  C  C_  A )  ->  ( F  |`  C ) : C --> B )
 
Theoremfresin 6073 An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
 |-  ( F : A --> B  ->  ( F  |`  X ) : ( A  i^i  X ) --> B )
 
Theoremresasplit 6074 If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014.)
 |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
 
Theoremfresaun 6075 The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
 |-  ( ( F : A
 --> C  /\  G : B
 --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )
 
Theoremfresaunres2 6076 From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.)
 |-  ( ( F : A
 --> C  /\  G : B
 --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( ( F  u.  G )  |`  B )  =  G )
 
Theoremfresaunres1 6077 From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.)
 |-  ( ( F : A
 --> C  /\  G : B
 --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( ( F  u.  G )  |`  A )  =  F )
 
Theoremfcoi1 6078 Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F : A --> B  ->  ( F  o.  (  _I  |`  A )
 )  =  F )
 
Theoremfcoi2 6079 Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F : A --> B  ->  ( (  _I  |`  B )  o.  F )  =  F )
 
Theoremfeu 6080* There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
 |-  ( ( F : A
 --> B  /\  C  e.  A )  ->  E! y  e.  B  <. C ,  y >.  e.  F )
 
Theoremfimass 6081 The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( F : A --> B  ->  ( F " X )  C_  B )
 
Theoremfcnvres 6082 The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
 |-  ( F : A --> B  ->  `' ( F  |`  A )  =  ( `' F  |`  B ) )
 
Theoremfimacnvdisj 6083 The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
 |-  ( ( F : A
 --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )
 
Theoremfint 6084* Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  B  =/=  (/)   =>    |-  ( F : A --> |^|
 B 
 <-> 
 A. x  e.  B  F : A --> x )
 
Theoremfin 6085 Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  ( F : A --> ( B  i^i  C )  <-> 
 ( F : A --> B  /\  F : A --> C ) )
 
Theoremf0 6086 The empty function. (Contributed by NM, 14-Aug-1999.)
 |-  (/) : (/) --> A
 
Theoremf00 6087 A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
 |-  ( F : A --> (/)  <->  ( F  =  (/)  /\  A  =  (/) ) )
 
Theoremf0bi 6088 A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
 |-  ( F : (/) --> X  <->  F  =  (/) )
 
Theoremf0dom0 6089 A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
 |-  ( F : X --> Y  ->  ( X  =  (/)  <->  F  =  (/) ) )
 
Theoremf0rn0 6090* If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
 |-  ( ( E : X
 --> Y  /\  -.  E. y  e.  Y  y  e.  ran  E )  ->  X  =  (/) )
 
Theoremfconst 6091 A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
 |-  B  e.  _V   =>    |-  ( A  X.  { B } ) : A --> { B }
 
Theoremfconstg 6092 A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
 |-  ( B  e.  V  ->  ( A  X.  { B } ) : A --> { B } )
 
Theoremfnconstg 6093 A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.)
 |-  ( B  e.  V  ->  ( A  X.  { B } )  Fn  A )
 
Theoremfconst6g 6094 Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
 |-  ( B  e.  C  ->  ( A  X.  { B } ) : A --> C )
 
Theoremfconst6 6095 A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
 |-  B  e.  C   =>    |-  ( A  X.  { B } ) : A --> C
 
Theoremf1eq1 6096 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
 |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )
 
Theoremf1eq2 6097 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
 |-  ( A  =  B  ->  ( F : A -1-1-> C  <->  F : B -1-1-> C ) )
 
Theoremf1eq3 6098 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
 |-  ( A  =  B  ->  ( F : C -1-1-> A  <->  F : C -1-1-> B ) )
 
Theoremnff1 6099 Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
 |-  F/_ x F   &    |-  F/_ x A   &    |-  F/_ x B   =>    |- 
 F/ x  F : A -1-1-> B
 
Theoremdff12 6100* Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
 |-  ( F : A -1-1-> B  <-> 
 ( F : A --> B  /\  A. y E* x  x F y ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >