| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > freq1 | Structured version Visualization version Unicode version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.) |
| Ref | Expression |
|---|---|
| freq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq 4655 |
. . . . . 6
| |
| 2 | 1 | notbid 308 |
. . . . 5
|
| 3 | 2 | rexralbidv 3058 |
. . . 4
|
| 4 | 3 | imbi2d 330 |
. . 3
|
| 5 | 4 | albidv 1849 |
. 2
|
| 6 | df-fr 5073 |
. 2
| |
| 7 | df-fr 5073 |
. 2
| |
| 8 | 5, 6, 7 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-br 4654 df-fr 5073 |
| This theorem is referenced by: weeq1 5102 freq12d 37609 |
| Copyright terms: Public domain | W3C validator |