HomeHome Metamath Proof Explorer
Theorem List (p. 51 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 5001-5100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremssopab2 5001 Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 19-May-2013.)
 |-  ( A. x A. y ( ph  ->  ps )  ->  { <. x ,  y >.  |  ph }  C_  {
 <. x ,  y >.  |  ps } )
 
Theoremssopab2b 5002 Equivalence of ordered pair abstraction subclass and implication. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  ( { <. x ,  y >.  |  ph }  C_  {
 <. x ,  y >.  |  ps }  <->  A. x A. y
 ( ph  ->  ps )
 )
 
Theoremssopab2i 5003 Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 5-Apr-1995.)
 |-  ( ph  ->  ps )   =>    |-  { <. x ,  y >.  |  ph } 
 C_  { <. x ,  y >.  |  ps }
 
Theoremssopab2dv 5004* Inference of ordered pair abstraction subclass from implication. (Contributed by NM, 19-Jan-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  {
 <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ch } )
 
Theoremeqopab2b 5005 Equivalence of ordered pair abstraction equality and biconditional. (Contributed by Mario Carneiro, 4-Jan-2017.)
 |-  ( { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y
 ( ph  <->  ps ) )
 
Theoremopabn0 5006 Nonempty ordered pair class abstraction. (Contributed by NM, 10-Oct-2007.)
 |-  ( { <. x ,  y >.  |  ph }  =/=  (/)  <->  E. x E. y ph )
 
Theoremopab0 5007 Empty ordered pair class abstraction. (Contributed by AV, 29-Oct-2021.)
 |-  ( { <. x ,  y >.  |  ph }  =  (/)  <->  A. x A. y  -.  ph )
 
Theoremcsbopab 5008* Move substitution into a class abstraction. Version of csbopabgALT 5009 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.)
 |-  [_ A  /  x ]_
 { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph }
 
TheoremcsbopabgALT 5009* Move substitution into a class abstraction. Version of csbopab 5008 with a sethood antecedent but depending on fewer axioms. (Contributed by NM, 6-Aug-2007.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_
 { <. y ,  z >.  |  ph }  =  { <. y ,  z >.  |  [. A  /  x ]. ph } )
 
Theoremcsbmpt12 5010* Move substitution into a maps-to notation. (Contributed by AV, 26-Sep-2019.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( y  e.  Y  |->  Z )  =  (
 y  e.  [_ A  /  x ]_ Y  |->  [_ A  /  x ]_ Z ) )
 
Theoremcsbmpt2 5011* Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019.)
 |-  ( A  e.  V  -> 
 [_ A  /  x ]_ ( y  e.  Y  |->  Z )  =  (
 y  e.  Y  |->  [_ A  /  x ]_ Z ) )
 
Theoremiunopab 5012* Move indexed union inside an ordered-pair abstraction. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  U_ z  e.  A  { <. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  E. z  e.  A  ph }
 
Theoremelopabr 5013* Membership in a class abstraction of pairs, defined by a binary relation. (Contributed by AV, 16-Feb-2021.)
 |-  ( A  e.  { <. x ,  y >.  |  x R y }  ->  A  e.  R )
 
Theoremelopabran 5014* Membership in a class abstraction of pairs, defined by a restricted binary relation. (Contributed by AV, 16-Feb-2021.)
 |-  ( A  e.  { <. x ,  y >.  |  ( x R y 
 /\  ps ) }  ->  A  e.  R )
 
Theoremrbropapd 5015* Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( ( F  e.  X  /\  P  e.  Y ) 
 ->  ( F M P  <->  ( F W P  /\  ch ) ) ) )
 
Theoremrbropap 5016* Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the condition 
ps. (Contributed by AV, 31-Jan-2021.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps ) } )   &    |-  ( ( f  =  F  /\  p  =  P )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ( ph  /\  F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch ) ) )
 
Theorem2rbropap 5017* Properties of a pair in a restricted binary relation  M expressed as an ordered-pair class abstraction:  M is the binary relation  W restricted by the conditions  ps and  ta. (Contributed by AV, 31-Jan-2021.)
 |-  ( ph  ->  M  =  { <. f ,  p >.  |  ( f W p  /\  ps  /\  ta ) } )   &    |-  (
 ( f  =  F  /\  p  =  P )  ->  ( ps  <->  ch ) )   &    |-  (
 ( f  =  F  /\  p  =  P )  ->  ( ta  <->  th ) )   =>    |-  ( ( ph  /\  F  e.  X  /\  P  e.  Y )  ->  ( F M P  <->  ( F W P  /\  ch 
 /\  th ) ) )
 
2.3.5  Power class of union and intersection
 
Theorempwin 5018 The power class of the intersection of two classes is the intersection of their power classes. Exercise 4.12(j) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
 |- 
 ~P ( A  i^i  B )  =  ( ~P A  i^i  ~P B )
 
Theorempwunss 5019 The power class of the union of two classes includes the union of their power classes. Exercise 4.12(k) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
 |-  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B )
 
Theorempwssun 5020 The power class of the union of two classes is a subset of the union of their power classes, iff one class is a subclass of the other. Exercise 4.12(l) of [Mendelson] p. 235. (Contributed by NM, 23-Nov-2003.)
 |-  ( ( A  C_  B  \/  B  C_  A ) 
 <->  ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B ) )
 
Theorempwundif 5021 Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.)
 |- 
 ~P ( A  u.  B )  =  (
 ( ~P ( A  u.  B )  \  ~P A )  u.  ~P A )
 
Theorempwun 5022 The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by NM, 23-Nov-2003.)
 |-  ( ( A  C_  B  \/  B  C_  A ) 
 <->  ~P ( A  u.  B )  =  ( ~P A  u.  ~P B ) )
 
2.3.6  The identity relation
 
Syntaxcid 5023 Extend the definition of a class to include the identity relation.
 class  _I
 
Definitiondf-id 5024* Define the identity relation. Definition 9.15 of [Quine] p. 64. For example,  5  _I  5 and 
-.  4  _I  5 (ex-id 27291). (Contributed by NM, 13-Aug-1995.)
 |- 
 _I  =  { <. x ,  y >.  |  x  =  y }
 
Theoremdfid3 5025 A stronger version of df-id 5024 that doesn't require  x and  y to be distinct. Ordinarily, we wouldn't use this as a definition, since non-distinct dummy variables would make soundness verification more difficult (as the proof here shows). The proof can be instructive in showing how distinct variable requirements may be eliminated, a task that is not necessarily obvious. (Contributed by NM, 5-Feb-2008.) (Revised by Mario Carneiro, 18-Nov-2016.)
 |- 
 _I  =  { <. x ,  y >.  |  x  =  y }
 
Theoremdfid4 5026 The identity function using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017.)
 |- 
 _I  =  ( x  e.  _V  |->  x )
 
Theoremdfid2 5027 Alternate definition of the identity relation. (Contributed by NM, 15-Mar-2007.)
 |- 
 _I  =  { <. x ,  x >.  |  x  =  x }
 
2.3.7  The membership (or epsilon) relation
 
Syntaxcep 5028 Extend class notation to include the membership/epsilon relation.
 class  _E
 
Definitiondf-eprel 5029* Define the membership relation, or epsilon relation. Similar to Definition 6.22 of [TakeutiZaring] p. 30. The epsilon relation and set membership are the same, that is,  ( A  _E  B  <->  A  e.  B ) when  B is a set by epelg 5030. Thus,  5  _E  { 1 ,  5 } (ex-eprel 27290). (Contributed by NM, 13-Aug-1995.)
 |- 
 _E  =  { <. x ,  y >.  |  x  e.  y }
 
Theoremepelg 5030 The epsilon relation and membership are the same. General version of epel 5032. (Contributed by Scott Fenton, 27-Mar-2011.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( B  e.  V  ->  ( A  _E  B  <->  A  e.  B ) )
 
Theoremepelc 5031 The epsilon relationship and the membership relation are the same. (Contributed by Scott Fenton, 11-Apr-2012.)
 |-  B  e.  _V   =>    |-  ( A  _E  B 
 <->  A  e.  B )
 
Theoremepel 5032 The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
 |-  ( x  _E  y  <->  x  e.  y )
 
2.3.8  Partial and complete ordering
 
Syntaxwpo 5033 Extend wff notation to include the strict partial ordering predicate. Read: '  R is a partial order on  A.'
 wff  R  Po  A
 
Syntaxwor 5034 Extend wff notation to include the strict complete ordering predicate. Read: '  R orders  A.'
 wff  R  Or  A
 
Definitiondf-po 5035* Define the strict partial order predicate. Definition of [Enderton] p. 168. The expression  R  Po  A means  R is a partial order on  A. For example,  <  Po  RR is true, while  <_  Po  RR is false (ex-po 27292). (Contributed by NM, 16-Mar-1997.)
 |-  ( R  Po  A  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( -.  x R x  /\  ( ( x R y  /\  y R z )  ->  x R z ) ) )
 
Definitiondf-so 5036* Define the strict complete (linear) order predicate. The expression  R  Or  A is true if relationship  R orders  A. For example,  <  Or  RR is true (ltso 10118). Equivalent to Definition 6.19(1) of [TakeutiZaring] p. 29. (Contributed by NM, 21-Jan-1996.)
 |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  ( x R y  \/  x  =  y  \/  y R x ) ) )
 
Theoremposs 5037 Subset theorem for the partial ordering predicate. (Contributed by NM, 27-Mar-1997.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  ( A  C_  B  ->  ( R  Po  B  ->  R  Po  A ) )
 
Theorempoeq1 5038 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
 |-  ( R  =  S  ->  ( R  Po  A  <->  S  Po  A ) )
 
Theorempoeq2 5039 Equality theorem for partial ordering predicate. (Contributed by NM, 27-Mar-1997.)
 |-  ( A  =  B  ->  ( R  Po  A  <->  R  Po  B ) )
 
Theoremnfpo 5040 Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  Po  A
 
Theoremnfso 5041 Bound-variable hypothesis builder for total orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  Or  A
 
Theorempocl 5042 Properties of partial order relation in class notation. (Contributed by NM, 27-Mar-1997.)
 |-  ( R  Po  A  ->  ( ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) 
 ->  ( -.  B R B  /\  ( ( B R C  /\  C R D )  ->  B R D ) ) ) )
 
Theoremispod 5043* Sufficient conditions for a partial order. (Contributed by NM, 9-Jul-2014.)
 |-  ( ( ph  /\  x  e.  A )  ->  -.  x R x )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  ->  ( ( x R y  /\  y R z )  ->  x R z ) )   =>    |-  ( ph  ->  R  Po  A )
 
Theoremswopolem 5044* Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )
 )  ->  ( x R y  ->  ( x R z  \/  z R y ) ) )   =>    |-  ( ( ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )
 )  ->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
 
Theoremswopo 5045* A strict weak order is a partial order. (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( ph  /\  (
 y  e.  A  /\  z  e.  A )
 )  ->  ( y R z  ->  -.  z R y ) )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A )
 )  ->  ( x R y  ->  ( x R z  \/  z R y ) ) )   =>    |-  ( ph  ->  R  Po  A )
 
Theorempoirr 5046 A partial order relation is irreflexive. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  B  e.  A )  ->  -.  B R B )
 
Theorempotr 5047 A partial order relation is a transitive relation. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) )  ->  ( ( B R C  /\  C R D )  ->  B R D ) )
 
Theorempo2nr 5048 A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  -.  ( B R C  /\  C R B ) )
 
Theorempo3nr 5049 A partial order relation has no 3-cycle loops. (Contributed by NM, 27-Mar-1997.)
 |-  ( ( R  Po  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
 
Theorempo0 5050 Any relation is a partial ordering of the empty set. (Contributed by NM, 28-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  R  Po  (/)
 
Theorempofun 5051* A function preserves a partial order relation. (Contributed by Jeff Madsen, 18-Jun-2011.)
 |-  S  =  { <. x ,  y >.  |  X R Y }   &    |-  ( x  =  y  ->  X  =  Y )   =>    |-  ( ( R  Po  B  /\  A. x  e.  A  X  e.  B )  ->  S  Po  A )
 
Theoremsopo 5052 A strict linear order is a strict partial order. (Contributed by NM, 28-Mar-1997.)
 |-  ( R  Or  A  ->  R  Po  A )
 
Theoremsoss 5053 Subset theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  C_  B  ->  ( R  Or  B  ->  R  Or  A ) )
 
Theoremsoeq1 5054 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
 |-  ( R  =  S  ->  ( R  Or  A  <->  S  Or  A ) )
 
Theoremsoeq2 5055 Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
 |-  ( A  =  B  ->  ( R  Or  A  <->  R  Or  B ) )
 
Theoremsonr 5056 A strict order relation is irreflexive. (Contributed by NM, 24-Nov-1995.)
 |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
 
Theoremsotr 5057 A strict order relation is a transitive relation. (Contributed by NM, 21-Jan-1996.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) )  ->  ( ( B R C  /\  C R D )  ->  B R D ) )
 
Theoremsolin 5058 A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
 
Theoremso2nr 5059 A strict order relation has no 2-cycle loops. (Contributed by NM, 21-Jan-1996.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  -.  ( B R C  /\  C R B ) )
 
Theoremso3nr 5060 A strict order relation has no 3-cycle loops. (Contributed by NM, 21-Jan-1996.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) )  ->  -.  ( B R C  /\  C R D  /\  D R B ) )
 
Theoremsotric 5061 A strict order relation satisfies strict trichotomy. (Contributed by NM, 19-Feb-1996.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  ( B R C  <->  -.  ( B  =  C  \/  C R B ) ) )
 
Theoremsotrieq 5062 Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )
 
Theoremsotrieq2 5063 Trichotomy law for strict order relation. (Contributed by NM, 5-May-1999.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  ( B  =  C  <->  ( -.  B R C  /\  -.  C R B ) ) )
 
Theoremsotr2 5064 A transitivity relation. (Read  B  <_  C and  C  < 
D implies  B  <  D.) (Contributed by Mario Carneiro, 10-May-2013.)
 |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A  /\  D  e.  A ) )  ->  ( ( -.  C R B  /\  C R D )  ->  B R D ) )
 
Theoremissod 5065* An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ph  ->  R  Po  A )   &    |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  A ) )  ->  ( x R y  \/  x  =  y  \/  y R x ) )   =>    |-  ( ph  ->  R  Or  A )
 
Theoremissoi 5066* An irreflexive, transitive, linear relation is a strict ordering. (Contributed by NM, 21-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( x  e.  A  ->  -.  x R x )   &    |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
 ( x R y 
 /\  y R z )  ->  x R z ) )   &    |-  (
 ( x  e.  A  /\  y  e.  A )  ->  ( x R y  \/  x  =  y  \/  y R x ) )   =>    |-  R  Or  A
 
Theoremisso2i 5067* Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( x  e.  A  /\  y  e.  A )  ->  ( x R y  <->  -.  ( x  =  y  \/  y R x ) ) )   &    |-  ( ( x  e.  A  /\  y  e.  A  /\  z  e.  A )  ->  (
 ( x R y 
 /\  y R z )  ->  x R z ) )   =>    |-  R  Or  A
 
Theoremso0 5068 Any relation is a strict ordering of the empty set. (Contributed by NM, 16-Mar-1997.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  R  Or  (/)
 
Theoremsomo 5069* A totally ordered set has at most one minimal element. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by NM, 16-Jun-2017.)
 |-  ( R  Or  A  ->  E* x  e.  A  A. y  e.  A  -.  y R x )
 
2.3.9  Founded and well-ordering relations
 
Syntaxwfr 5070 Extend wff notation to include the well-founded predicate. Read: '  R is a well-founded relation on 
A.'
 wff  R  Fr  A
 
Syntaxwse 5071 Extend wff notation to include the set-like predicate. Read: '  R is set-like on  A.'
 wff  R Se  A
 
Syntaxwwe 5072 Extend wff notation to include the well-ordering predicate. Read: '  R well-orders  A.'
 wff  R  We  A
 
Definitiondf-fr 5073* Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5079 and dffr3 5498. (Contributed by NM, 3-Apr-1994.)
 |-  ( R  Fr  A  <->  A. x ( ( x 
 C_  A  /\  x  =/= 
 (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
 
Definitiondf-se 5074* Define the set-like predicate. (Contributed by Mario Carneiro, 19-Nov-2014.)
 |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
 
Definitiondf-we 5075 Define the well-ordering predicate. For an alternate definition, see dfwe2 6981. (Contributed by NM, 3-Apr-1994.)
 |-  ( R  We  A  <->  ( R  Fr  A  /\  R  Or  A ) )
 
Theoremfri 5076* Property of well-founded relation (one direction of definition). (Contributed by NM, 18-Mar-1997.)
 |-  ( ( ( B  e.  C  /\  R  Fr  A )  /\  ( B  C_  A  /\  B  =/= 
 (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
 
Theoremseex 5077* The  R-preimage of an element of the base set in a set-like relation is a set. (Contributed by Mario Carneiro, 19-Nov-2014.)
 |-  ( ( R Se  A  /\  B  e.  A ) 
 ->  { x  e.  A  |  x R B }  e.  _V )
 
Theoremexse 5078 Any relation on a set is set-like on it. (Contributed by Mario Carneiro, 22-Jun-2015.)
 |-  ( A  e.  V  ->  R Se  A )
 
Theoremdffr2 5079* Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.)
 |-  ( R  Fr  A  <->  A. x ( ( x 
 C_  A  /\  x  =/= 
 (/) )  ->  E. y  e.  x  { z  e.  x  |  z R y }  =  (/) ) )
 
Theoremfrc 5080* Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.)
 |-  B  e.  _V   =>    |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  { y  e.  B  |  y R x }  =  (/) )
 
Theoremfrss 5081 Subset theorem for the well-founded predicate. Exercise 1 of [TakeutiZaring] p. 31. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
 |-  ( A  C_  B  ->  ( R  Fr  B  ->  R  Fr  A ) )
 
Theoremsess1 5082 Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( R  C_  S  ->  ( S Se  A  ->  R Se 
 A ) )
 
Theoremsess2 5083 Subset theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( A  C_  B  ->  ( R Se  B  ->  R Se 
 A ) )
 
Theoremfreq1 5084 Equality theorem for the well-founded predicate. (Contributed by NM, 9-Mar-1997.)
 |-  ( R  =  S  ->  ( R  Fr  A  <->  S  Fr  A ) )
 
Theoremfreq2 5085 Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
 |-  ( A  =  B  ->  ( R  Fr  A  <->  R  Fr  B ) )
 
Theoremseeq1 5086 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( R  =  S  ->  ( R Se  A  <->  S Se  A )
 )
 
Theoremseeq2 5087 Equality theorem for the set-like predicate. (Contributed by Mario Carneiro, 24-Jun-2015.)
 |-  ( A  =  B  ->  ( R Se  A  <->  R Se  B )
 )
 
Theoremnffr 5088 Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  Fr  A
 
Theoremnfse 5089 Bound-variable hypothesis builder for set-like relations. (Contributed by Mario Carneiro, 24-Jun-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R Se  A
 
Theoremnfwe 5090 Bound-variable hypothesis builder for well-orderings. (Contributed by Stefan O'Rear, 20-Jan-2015.) (Revised by Mario Carneiro, 14-Oct-2016.)
 |-  F/_ x R   &    |-  F/_ x A   =>    |-  F/ x  R  We  A
 
Theoremfrirr 5091 A well-founded relation is irreflexive. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 2-Jan-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
 |-  ( ( R  Fr  A  /\  B  e.  A )  ->  -.  B R B )
 
Theoremfr2nr 5092 A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of [TakeutiZaring] p. 30. (Contributed by NM, 30-May-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
 |-  ( ( R  Fr  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  -.  ( B R C  /\  C R B ) )
 
Theoremfr0 5093 Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993.)
 |-  R  Fr  (/)
 
Theoremfrminex 5094* If an element of a well-founded set satisfies a property  ph, then there is a minimal element that satisfies  ph. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
 |-  A  e.  _V   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( R  Fr  A  ->  ( E. x  e.  A  ph  ->  E. x  e.  A  ( ph  /\  A. y  e.  A  ( ps  ->  -.  y R x ) ) ) )
 
Theoremefrirr 5095 Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
 |-  (  _E  Fr  A  ->  -.  A  e.  A )
 
Theoremefrn2lp 5096 A set founded by epsilon contains no 2-cycle loops. (Contributed by NM, 19-Apr-1994.)
 |-  ( (  _E  Fr  A  /\  ( B  e.  A  /\  C  e.  A ) )  ->  -.  ( B  e.  C  /\  C  e.  B )
 )
 
Theoremepse 5097 The epsilon relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the epsilon relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
 |- 
 _E Se  A
 
Theoremtz7.2 5098 Similar to Theorem 7.2 of [TakeutiZaring] p. 35, of except that the Axiom of Regularity is not required due to antecedent  _E  Fr  A. (Contributed by NM, 4-May-1994.)
 |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
 
Theoremdfepfr 5099* An alternate way of saying that the epsilon relation is well-founded. (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
 |-  (  _E  Fr  A  <->  A. x ( ( x 
 C_  A  /\  x  =/= 
 (/) )  ->  E. y  e.  x  ( x  i^i  y )  =  (/) ) )
 
Theoremepfrc 5100* A subset of an epsilon-founded class has a minimal element. (Contributed by NM, 17-Feb-2004.) (Revised by David Abernethy, 22-Feb-2011.)
 |-  B  e.  _V   =>    |-  ( (  _E 
 Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >