MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-fr Structured version   Visualization version   Unicode version

Definition df-fr 5073
Description: Define the well-founded relation predicate. Definition 6.24(1) of [TakeutiZaring] p. 30. For alternate definitions, see dffr2 5079 and dffr3 5498. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
df-fr  |-  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
Distinct variable groups:    x, y,
z, R    x, A, y, z

Detailed syntax breakdown of Definition df-fr
StepHypRef Expression
1 cA . . 3  class  A
2 cR . . 3  class  R
31, 2wfr 5070 . 2  wff  R  Fr  A
4 vx . . . . . . 7  setvar  x
54cv 1482 . . . . . 6  class  x
65, 1wss 3574 . . . . 5  wff  x  C_  A
7 c0 3915 . . . . . 6  class  (/)
85, 7wne 2794 . . . . 5  wff  x  =/=  (/)
96, 8wa 384 . . . 4  wff  ( x 
C_  A  /\  x  =/=  (/) )
10 vz . . . . . . . . 9  setvar  z
1110cv 1482 . . . . . . . 8  class  z
12 vy . . . . . . . . 9  setvar  y
1312cv 1482 . . . . . . . 8  class  y
1411, 13, 2wbr 4653 . . . . . . 7  wff  z R y
1514wn 3 . . . . . 6  wff  -.  z R y
1615, 10, 5wral 2912 . . . . 5  wff  A. z  e.  x  -.  z R y
1716, 12, 5wrex 2913 . . . 4  wff  E. y  e.  x  A. z  e.  x  -.  z R y
189, 17wi 4 . . 3  wff  ( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )
1918, 4wal 1481 . 2  wff  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y )
203, 19wb 196 1  wff  ( R  Fr  A  <->  A. x
( ( x  C_  A  /\  x  =/=  (/) )  ->  E. y  e.  x  A. z  e.  x  -.  z R y ) )
Colors of variables: wff setvar class
This definition is referenced by:  fri  5076  dffr2  5079  frss  5081  freq1  5084  nffr  5088  frinxp  5184  frsn  5189  f1oweALT  7152  frxp  7287  frfi  8205  fpwwe2lem12  9463  fpwwe2lem13  9464  bnj1154  31067  dffr5  31643  dfon2lem9  31696  fin2so  33396  fnwe2  37623
  Copyright terms: Public domain W3C validator