| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gencbvex2 | Structured version Visualization version Unicode version | ||
| Description: Restatement of gencbvex 3250 with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006.) |
| Ref | Expression |
|---|---|
| gencbvex2.1 |
|
| gencbvex2.2 |
|
| gencbvex2.3 |
|
| gencbvex2.4 |
|
| Ref | Expression |
|---|---|
| gencbvex2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencbvex2.1 |
. 2
| |
| 2 | gencbvex2.2 |
. 2
| |
| 3 | gencbvex2.3 |
. 2
| |
| 4 | gencbvex2.4 |
. . 3
| |
| 5 | 3 | biimpac 503 |
. . . 4
|
| 6 | 5 | exlimiv 1858 |
. . 3
|
| 7 | 4, 6 | impbii 199 |
. 2
|
| 8 | 1, 2, 3, 7 | gencbvex 3250 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |