| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gencbvex | Structured version Visualization version Unicode version | ||
| Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| gencbvex.1 |
|
| gencbvex.2 |
|
| gencbvex.3 |
|
| gencbvex.4 |
|
| Ref | Expression |
|---|---|
| gencbvex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | excom 2042 |
. 2
| |
| 2 | gencbvex.1 |
. . . 4
| |
| 3 | gencbvex.3 |
. . . . . . 7
| |
| 4 | gencbvex.2 |
. . . . . . 7
| |
| 5 | 3, 4 | anbi12d 747 |
. . . . . 6
|
| 6 | 5 | bicomd 213 |
. . . . 5
|
| 7 | 6 | eqcoms 2630 |
. . . 4
|
| 8 | 2, 7 | ceqsexv 3242 |
. . 3
|
| 9 | 8 | exbii 1774 |
. 2
|
| 10 | 19.41v 1914 |
. . . 4
| |
| 11 | simpr 477 |
. . . . 5
| |
| 12 | gencbvex.4 |
. . . . . . . 8
| |
| 13 | eqcom 2629 |
. . . . . . . . . . 11
| |
| 14 | 13 | biimpi 206 |
. . . . . . . . . 10
|
| 15 | 14 | adantl 482 |
. . . . . . . . 9
|
| 16 | 15 | eximi 1762 |
. . . . . . . 8
|
| 17 | 12, 16 | sylbi 207 |
. . . . . . 7
|
| 18 | 17 | adantr 481 |
. . . . . 6
|
| 19 | 18 | ancri 575 |
. . . . 5
|
| 20 | 11, 19 | impbii 199 |
. . . 4
|
| 21 | 10, 20 | bitri 264 |
. . 3
|
| 22 | 21 | exbii 1774 |
. 2
|
| 23 | 1, 9, 22 | 3bitr3i 290 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-11 2034 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: gencbvex2 3251 gencbval 3252 |
| Copyright terms: Public domain | W3C validator |