Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gneispace0nelrn3 Structured version   Visualization version   Unicode version

Theorem gneispace0nelrn3 38440
Description: A generic neighborhood space has a non-empty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.)
Hypothesis
Ref Expression
gneispace.a  |-  A  =  { f  |  ( f : dom  f --> ( ~P ( ~P dom  f  \  { (/) } ) 
\  { (/) } )  /\  A. p  e. 
dom  f A. n  e.  ( f `  p
) ( p  e.  n  /\  A. s  e.  ~P  dom  f ( n  C_  s  ->  s  e.  ( f `  p ) ) ) ) }
Assertion
Ref Expression
gneispace0nelrn3  |-  ( F  e.  A  ->  -.  (/) 
e.  ran  F )
Distinct variable groups:    n, F, p, f    F, s, f   
f, n, p
Allowed substitution hints:    A( f, n, s, p)

Proof of Theorem gneispace0nelrn3
StepHypRef Expression
1 gneispace.a . . 3  |-  A  =  { f  |  ( f : dom  f --> ( ~P ( ~P dom  f  \  { (/) } ) 
\  { (/) } )  /\  A. p  e. 
dom  f A. n  e.  ( f `  p
) ( p  e.  n  /\  A. s  e.  ~P  dom  f ( n  C_  s  ->  s  e.  ( f `  p ) ) ) ) }
21gneispacern 38436 . 2  |-  ( F  e.  A  ->  ran  F 
C_  ( ~P ( ~P dom  F  \  { (/)
} )  \  { (/)
} ) )
3 neldifsnd 4322 . . 3  |-  ( ran 
F  C_  ( ~P ( ~P dom  F  \  { (/) } )  \  { (/) } )  ->  -.  (/)  e.  ( ~P ( ~P dom  F  \  { (/) } )  \  { (/) } ) )
4 ssel 3597 . . 3  |-  ( ran 
F  C_  ( ~P ( ~P dom  F  \  { (/) } )  \  { (/) } )  -> 
( (/)  e.  ran  F  -> 
(/)  e.  ( ~P ( ~P dom  F  \  { (/) } )  \  { (/) } ) ) )
53, 4mtod 189 . 2  |-  ( ran 
F  C_  ( ~P ( ~P dom  F  \  { (/) } )  \  { (/) } )  ->  -.  (/)  e.  ran  F
)
62, 5syl 17 1  |-  ( F  e.  A  ->  -.  (/) 
e.  ran  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   dom cdm 5114   ran crn 5115   -->wf 5884   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator