HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  his1i Structured version   Visualization version   Unicode version

Theorem his1i 27957
Description: Conjugate law for inner product. Postulate (S1) of [Beran] p. 95. (Contributed by NM, 15-May-2005.) (New usage is discouraged.)
Hypotheses
Ref Expression
his1.1  |-  A  e. 
~H
his1.2  |-  B  e. 
~H
Assertion
Ref Expression
his1i  |-  ( A 
.ih  B )  =  ( * `  ( B  .ih  A ) )

Proof of Theorem his1i
StepHypRef Expression
1 his1.1 . 2  |-  A  e. 
~H
2 his1.2 . 2  |-  B  e. 
~H
3 ax-his1 27939 . 2  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  B
)  =  ( * `
 ( B  .ih  A ) ) )
41, 2, 3mp2an 708 1  |-  ( A 
.ih  B )  =  ( * `  ( B  .ih  A ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   *ccj 13836   ~Hchil 27776    .ih csp 27779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-his1 27939
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  normlem2  27968  bcseqi  27977  bcsiALT  28036  pjadjii  28533  lnopunilem1  28869  lnophmlem2  28876
  Copyright terms: Public domain W3C validator