HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnophmlem2 Structured version   Visualization version   Unicode version

Theorem lnophmlem2 28876
Description: Lemma for lnophmi 28877. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
lnophmlem.1  |-  A  e. 
~H
lnophmlem.2  |-  B  e. 
~H
lnophmlem.3  |-  T  e. 
LinOp
lnophmlem.4  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
Assertion
Ref Expression
lnophmlem2  |-  ( A 
.ih  ( T `  B ) )  =  ( ( T `  A )  .ih  B
)
Distinct variable groups:    x, A    x, B    x, T

Proof of Theorem lnophmlem2
StepHypRef Expression
1 lnophmlem.2 . . . . . 6  |-  B  e. 
~H
2 lnophmlem.1 . . . . . . 7  |-  A  e. 
~H
3 lnophmlem.3 . . . . . . . . 9  |-  T  e. 
LinOp
43lnopfi 28828 . . . . . . . 8  |-  T : ~H
--> ~H
54ffvelrni 6358 . . . . . . 7  |-  ( A  e.  ~H  ->  ( T `  A )  e.  ~H )
62, 5ax-mp 5 . . . . . 6  |-  ( T `
 A )  e. 
~H
74ffvelrni 6358 . . . . . . 7  |-  ( B  e.  ~H  ->  ( T `  B )  e.  ~H )
81, 7ax-mp 5 . . . . . 6  |-  ( T `
 B )  e. 
~H
91, 6, 2, 8polid2i 28014 . . . . 5  |-  ( B 
.ih  ( T `  A ) )  =  ( ( ( ( ( B  +h  A
)  .ih  ( ( T `  B )  +h  ( T `  A
) ) )  -  ( ( B  -h  A )  .ih  (
( T `  B
)  -h  ( T `
 A ) ) ) )  +  ( _i  x.  ( ( ( B  +h  (
_i  .h  A )
)  .ih  ( ( T `  B )  +h  ( _i  .h  ( T `  A )
) ) )  -  ( ( B  -h  ( _i  .h  A
) )  .ih  (
( T `  B
)  -h  ( _i  .h  ( T `  A ) ) ) ) ) ) )  /  4 )
101, 2hvcomi 27876 . . . . . . . . 9  |-  ( B  +h  A )  =  ( A  +h  B
)
118, 6hvcomi 27876 . . . . . . . . . 10  |-  ( ( T `  B )  +h  ( T `  A ) )  =  ( ( T `  A )  +h  ( T `  B )
)
123lnopaddi 28830 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( A  +h  B ) )  =  ( ( T `
 A )  +h  ( T `  B
) ) )
132, 1, 12mp2an 708 . . . . . . . . . 10  |-  ( T `
 ( A  +h  B ) )  =  ( ( T `  A )  +h  ( T `  B )
)
1411, 13eqtr4i 2647 . . . . . . . . 9  |-  ( ( T `  B )  +h  ( T `  A ) )  =  ( T `  ( A  +h  B ) )
1510, 14oveq12i 6662 . . . . . . . 8  |-  ( ( B  +h  A ) 
.ih  ( ( T `
 B )  +h  ( T `  A
) ) )  =  ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )
161, 2, 8, 6hisubcomi 27961 . . . . . . . . 9  |-  ( ( B  -h  A ) 
.ih  ( ( T `
 B )  -h  ( T `  A
) ) )  =  ( ( A  -h  B )  .ih  (
( T `  A
)  -h  ( T `
 B ) ) )
173lnopsubi 28833 . . . . . . . . . . 11  |-  ( ( A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( A  -h  B ) )  =  ( ( T `
 A )  -h  ( T `  B
) ) )
182, 1, 17mp2an 708 . . . . . . . . . 10  |-  ( T `
 ( A  -h  B ) )  =  ( ( T `  A )  -h  ( T `  B )
)
1918oveq2i 6661 . . . . . . . . 9  |-  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) )  =  ( ( A  -h  B )  .ih  (
( T `  A
)  -h  ( T `
 B ) ) )
2016, 19eqtr4i 2647 . . . . . . . 8  |-  ( ( B  -h  A ) 
.ih  ( ( T `
 B )  -h  ( T `  A
) ) )  =  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) )
2115, 20oveq12i 6662 . . . . . . 7  |-  ( ( ( B  +h  A
)  .ih  ( ( T `  B )  +h  ( T `  A
) ) )  -  ( ( B  -h  A )  .ih  (
( T `  B
)  -h  ( T `
 A ) ) ) )  =  ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )
22 ax-icn 9995 . . . . . . . . . . 11  |-  _i  e.  CC
2322, 1hvmulcli 27871 . . . . . . . . . . . 12  |-  ( _i  .h  B )  e. 
~H
242, 23hvsubcli 27878 . . . . . . . . . . 11  |-  ( A  -h  ( _i  .h  B ) )  e. 
~H
254ffvelrni 6358 . . . . . . . . . . . 12  |-  ( ( A  -h  ( _i  .h  B ) )  e.  ~H  ->  ( T `  ( A  -h  ( _i  .h  B
) ) )  e. 
~H )
2624, 25ax-mp 5 . . . . . . . . . . 11  |-  ( T `
 ( A  -h  ( _i  .h  B
) ) )  e. 
~H
2722, 22, 24, 26his35i 27946 . . . . . . . . . 10  |-  ( ( _i  .h  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( _i  .h  ( T `  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( ( _i  x.  (
* `  _i )
)  x.  ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) ) )
2822, 2, 23hvsubdistr1i 27909 . . . . . . . . . . . 12  |-  ( _i  .h  ( A  -h  ( _i  .h  B
) ) )  =  ( ( _i  .h  A )  -h  (
_i  .h  ( _i  .h  B ) ) )
2922, 2hvmulcli 27871 . . . . . . . . . . . . . 14  |-  ( _i  .h  A )  e. 
~H
3022, 23hvmulcli 27871 . . . . . . . . . . . . . 14  |-  ( _i  .h  ( _i  .h  B ) )  e. 
~H
3129, 30hvsubvali 27877 . . . . . . . . . . . . 13  |-  ( ( _i  .h  A )  -h  ( _i  .h  ( _i  .h  B
) ) )  =  ( ( _i  .h  A )  +h  ( -u 1  .h  ( _i  .h  ( _i  .h  B ) ) ) )
3222, 22, 1hvmulassi 27903 . . . . . . . . . . . . . . . 16  |-  ( ( _i  x.  _i )  .h  B )  =  ( _i  .h  (
_i  .h  B )
)
3332oveq2i 6661 . . . . . . . . . . . . . . 15  |-  ( -u
1  .h  ( ( _i  x.  _i )  .h  B ) )  =  ( -u 1  .h  ( _i  .h  (
_i  .h  B )
) )
34 ixi 10656 . . . . . . . . . . . . . . . . . . 19  |-  ( _i  x.  _i )  = 
-u 1
3534oveq2i 6661 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1  x.  ( _i  x.  _i ) )  =  ( -u 1  x.  -u 1 )
36 ax-1cn 9994 . . . . . . . . . . . . . . . . . . 19  |-  1  e.  CC
3736, 36mul2negi 10478 . . . . . . . . . . . . . . . . . 18  |-  ( -u
1  x.  -u 1
)  =  ( 1  x.  1 )
38 1t1e1 11175 . . . . . . . . . . . . . . . . . 18  |-  ( 1  x.  1 )  =  1
3935, 37, 383eqtri 2648 . . . . . . . . . . . . . . . . 17  |-  ( -u
1  x.  ( _i  x.  _i ) )  =  1
4039oveq1i 6660 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1  x.  (
_i  x.  _i )
)  .h  B )  =  ( 1  .h  B )
41 neg1cn 11124 . . . . . . . . . . . . . . . . 17  |-  -u 1  e.  CC
4222, 22mulcli 10045 . . . . . . . . . . . . . . . . 17  |-  ( _i  x.  _i )  e.  CC
4341, 42, 1hvmulassi 27903 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1  x.  (
_i  x.  _i )
)  .h  B )  =  ( -u 1  .h  ( ( _i  x.  _i )  .h  B
) )
44 ax-hvmulid 27863 . . . . . . . . . . . . . . . . 17  |-  ( B  e.  ~H  ->  (
1  .h  B )  =  B )
451, 44ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( 1  .h  B )  =  B
4640, 43, 453eqtr3i 2652 . . . . . . . . . . . . . . 15  |-  ( -u
1  .h  ( ( _i  x.  _i )  .h  B ) )  =  B
4733, 46eqtr3i 2646 . . . . . . . . . . . . . 14  |-  ( -u
1  .h  ( _i  .h  ( _i  .h  B ) ) )  =  B
4847oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( _i  .h  A )  +h  ( -u 1  .h  ( _i  .h  (
_i  .h  B )
) ) )  =  ( ( _i  .h  A )  +h  B
)
4931, 48eqtri 2644 . . . . . . . . . . . 12  |-  ( ( _i  .h  A )  -h  ( _i  .h  ( _i  .h  B
) ) )  =  ( ( _i  .h  A )  +h  B
)
5029, 1hvcomi 27876 . . . . . . . . . . . 12  |-  ( ( _i  .h  A )  +h  B )  =  ( B  +h  (
_i  .h  A )
)
5128, 49, 503eqtri 2648 . . . . . . . . . . 11  |-  ( _i  .h  ( A  -h  ( _i  .h  B
) ) )  =  ( B  +h  (
_i  .h  A )
)
5251fveq2i 6194 . . . . . . . . . . . 12  |-  ( T `
 ( _i  .h  ( A  -h  (
_i  .h  B )
) ) )  =  ( T `  ( B  +h  ( _i  .h  A ) ) )
533lnopmuli 28831 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  ( A  -h  (
_i  .h  B )
)  e.  ~H )  ->  ( T `  (
_i  .h  ( A  -h  ( _i  .h  B
) ) ) )  =  ( _i  .h  ( T `  ( A  -h  ( _i  .h  B ) ) ) ) )
5422, 24, 53mp2an 708 . . . . . . . . . . . 12  |-  ( T `
 ( _i  .h  ( A  -h  (
_i  .h  B )
) ) )  =  ( _i  .h  ( T `  ( A  -h  ( _i  .h  B
) ) ) )
553lnopaddmuli 28832 . . . . . . . . . . . . 13  |-  ( ( _i  e.  CC  /\  B  e.  ~H  /\  A  e.  ~H )  ->  ( T `  ( B  +h  ( _i  .h  A
) ) )  =  ( ( T `  B )  +h  (
_i  .h  ( T `  A ) ) ) )
5622, 1, 2, 55mp3an 1424 . . . . . . . . . . . 12  |-  ( T `
 ( B  +h  ( _i  .h  A
) ) )  =  ( ( T `  B )  +h  (
_i  .h  ( T `  A ) ) )
5752, 54, 563eqtr3i 2652 . . . . . . . . . . 11  |-  ( _i  .h  ( T `  ( A  -h  (
_i  .h  B )
) ) )  =  ( ( T `  B )  +h  (
_i  .h  ( T `  A ) ) )
5851, 57oveq12i 6662 . . . . . . . . . 10  |-  ( ( _i  .h  ( A  -h  ( _i  .h  B ) ) ) 
.ih  ( _i  .h  ( T `  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( ( B  +h  (
_i  .h  A )
)  .ih  ( ( T `  B )  +h  ( _i  .h  ( T `  A )
) ) )
59 cji 13899 . . . . . . . . . . . . . 14  |-  ( * `
 _i )  = 
-u _i
6059oveq2i 6661 . . . . . . . . . . . . 13  |-  ( _i  x.  ( * `  _i ) )  =  ( _i  x.  -u _i )
6122, 22mulneg2i 10477 . . . . . . . . . . . . 13  |-  ( _i  x.  -u _i )  = 
-u ( _i  x.  _i )
6234negeqi 10274 . . . . . . . . . . . . . 14  |-  -u (
_i  x.  _i )  =  -u -u 1
63 negneg1e1 11128 . . . . . . . . . . . . . 14  |-  -u -u 1  =  1
6462, 63eqtri 2644 . . . . . . . . . . . . 13  |-  -u (
_i  x.  _i )  =  1
6560, 61, 643eqtri 2648 . . . . . . . . . . . 12  |-  ( _i  x.  ( * `  _i ) )  =  1
6665oveq1i 6660 . . . . . . . . . . 11  |-  ( ( _i  x.  ( * `
 _i ) )  x.  ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( 1  x.  ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) ) )
67 lnophmlem.4 . . . . . . . . . . . . . 14  |-  A. x  e.  ~H  ( x  .ih  ( T `  x ) )  e.  RR
6824, 2, 3, 67lnophmlem1 28875 . . . . . . . . . . . . 13  |-  ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  e.  RR
6968recni 10052 . . . . . . . . . . . 12  |-  ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  e.  CC
7069mulid2i 10043 . . . . . . . . . . 11  |-  ( 1  x.  ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )
7166, 70eqtri 2644 . . . . . . . . . 10  |-  ( ( _i  x.  ( * `
 _i ) )  x.  ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) ) )  =  ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )
7227, 58, 713eqtr3i 2652 . . . . . . . . 9  |-  ( ( B  +h  ( _i  .h  A ) ) 
.ih  ( ( T `
 B )  +h  ( _i  .h  ( T `  A )
) ) )  =  ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )
7322, 6hvmulcli 27871 . . . . . . . . . . . 12  |-  ( _i  .h  ( T `  A ) )  e. 
~H
741, 29, 8, 73hisubcomi 27961 . . . . . . . . . . 11  |-  ( ( B  -h  ( _i  .h  A ) ) 
.ih  ( ( T `
 B )  -h  ( _i  .h  ( T `  A )
) ) )  =  ( ( ( _i  .h  A )  -h  B )  .ih  (
( _i  .h  ( T `  A )
)  -h  ( T `
 B ) ) )
7534oveq1i 6660 . . . . . . . . . . . . . . 15  |-  ( ( _i  x.  _i )  .h  B )  =  ( -u 1  .h  B )
7632, 75eqtr3i 2646 . . . . . . . . . . . . . 14  |-  ( _i  .h  ( _i  .h  B ) )  =  ( -u 1  .h  B )
7776oveq2i 6661 . . . . . . . . . . . . 13  |-  ( ( _i  .h  A )  +h  ( _i  .h  ( _i  .h  B
) ) )  =  ( ( _i  .h  A )  +h  ( -u 1  .h  B ) )
7822, 2, 23hvdistr1i 27908 . . . . . . . . . . . . 13  |-  ( _i  .h  ( A  +h  ( _i  .h  B
) ) )  =  ( ( _i  .h  A )  +h  (
_i  .h  ( _i  .h  B ) ) )
7929, 1hvsubvali 27877 . . . . . . . . . . . . 13  |-  ( ( _i  .h  A )  -h  B )  =  ( ( _i  .h  A )  +h  ( -u 1  .h  B ) )
8077, 78, 793eqtr4i 2654 . . . . . . . . . . . 12  |-  ( _i  .h  ( A  +h  ( _i  .h  B
) ) )  =  ( ( _i  .h  A )  -h  B
)
8180fveq2i 6194 . . . . . . . . . . . . 13  |-  ( T `
 ( _i  .h  ( A  +h  (
_i  .h  B )
) ) )  =  ( T `  (
( _i  .h  A
)  -h  B ) )
822, 23hvaddcli 27875 . . . . . . . . . . . . . 14  |-  ( A  +h  ( _i  .h  B ) )  e. 
~H
833lnopmuli 28831 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  ( A  +h  (
_i  .h  B )
)  e.  ~H )  ->  ( T `  (
_i  .h  ( A  +h  ( _i  .h  B
) ) ) )  =  ( _i  .h  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )
8422, 82, 83mp2an 708 . . . . . . . . . . . . 13  |-  ( T `
 ( _i  .h  ( A  +h  (
_i  .h  B )
) ) )  =  ( _i  .h  ( T `  ( A  +h  ( _i  .h  B
) ) ) )
853lnopmulsubi 28835 . . . . . . . . . . . . . 14  |-  ( ( _i  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( (
_i  .h  A )  -h  B ) )  =  ( ( _i  .h  ( T `  A ) )  -h  ( T `
 B ) ) )
8622, 2, 1, 85mp3an 1424 . . . . . . . . . . . . 13  |-  ( T `
 ( ( _i  .h  A )  -h  B ) )  =  ( ( _i  .h  ( T `  A ) )  -h  ( T `
 B ) )
8781, 84, 863eqtr3i 2652 . . . . . . . . . . . 12  |-  ( _i  .h  ( T `  ( A  +h  (
_i  .h  B )
) ) )  =  ( ( _i  .h  ( T `  A ) )  -h  ( T `
 B ) )
8880, 87oveq12i 6662 . . . . . . . . . . 11  |-  ( ( _i  .h  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( _i  .h  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )  =  ( ( ( _i  .h  A )  -h  B
)  .ih  ( (
_i  .h  ( T `  A ) )  -h  ( T `  B
) ) )
8974, 88eqtr4i 2647 . . . . . . . . . 10  |-  ( ( B  -h  ( _i  .h  A ) ) 
.ih  ( ( T `
 B )  -h  ( _i  .h  ( T `  A )
) ) )  =  ( ( _i  .h  ( A  +h  (
_i  .h  B )
) )  .ih  (
_i  .h  ( T `  ( A  +h  (
_i  .h  B )
) ) ) )
904ffvelrni 6358 . . . . . . . . . . . 12  |-  ( ( A  +h  ( _i  .h  B ) )  e.  ~H  ->  ( T `  ( A  +h  ( _i  .h  B
) ) )  e. 
~H )
9182, 90ax-mp 5 . . . . . . . . . . 11  |-  ( T `
 ( A  +h  ( _i  .h  B
) ) )  e. 
~H
9222, 22, 82, 91his35i 27946 . . . . . . . . . 10  |-  ( ( _i  .h  ( A  +h  ( _i  .h  B ) ) ) 
.ih  ( _i  .h  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )  =  ( ( _i  x.  (
* `  _i )
)  x.  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) ) )
9365oveq1i 6660 . . . . . . . . . . 11  |-  ( ( _i  x.  ( * `
 _i ) )  x.  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )  =  ( 1  x.  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) ) )
9482, 2, 3, 67lnophmlem1 28875 . . . . . . . . . . . . 13  |-  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  e.  RR
9594recni 10052 . . . . . . . . . . . 12  |-  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  e.  CC
9695mulid2i 10043 . . . . . . . . . . 11  |-  ( 1  x.  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )  =  ( ( A  +h  (
_i  .h  B )
)  .ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )
9793, 96eqtri 2644 . . . . . . . . . 10  |-  ( ( _i  x.  ( * `
 _i ) )  x.  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )  =  ( ( A  +h  (
_i  .h  B )
)  .ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )
9889, 92, 973eqtri 2648 . . . . . . . . 9  |-  ( ( B  -h  ( _i  .h  A ) ) 
.ih  ( ( T `
 B )  -h  ( _i  .h  ( T `  A )
) ) )  =  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) )
9972, 98oveq12i 6662 . . . . . . . 8  |-  ( ( ( B  +h  (
_i  .h  A )
)  .ih  ( ( T `  B )  +h  ( _i  .h  ( T `  A )
) ) )  -  ( ( B  -h  ( _i  .h  A
) )  .ih  (
( T `  B
)  -h  ( _i  .h  ( T `  A ) ) ) ) )  =  ( ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )  -  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )
10099oveq2i 6661 . . . . . . 7  |-  ( _i  x.  ( ( ( B  +h  ( _i  .h  A ) ) 
.ih  ( ( T `
 B )  +h  ( _i  .h  ( T `  A )
) ) )  -  ( ( B  -h  ( _i  .h  A
) )  .ih  (
( T `  B
)  -h  ( _i  .h  ( T `  A ) ) ) ) ) )  =  ( _i  x.  (
( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )  -  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) ) )
10121, 100oveq12i 6662 . . . . . 6  |-  ( ( ( ( B  +h  A )  .ih  (
( T `  B
)  +h  ( T `
 A ) ) )  -  ( ( B  -h  A ) 
.ih  ( ( T `
 B )  -h  ( T `  A
) ) ) )  +  ( _i  x.  ( ( ( B  +h  ( _i  .h  A ) )  .ih  ( ( T `  B )  +h  (
_i  .h  ( T `  A ) ) ) )  -  ( ( B  -h  ( _i  .h  A ) ) 
.ih  ( ( T `
 B )  -h  ( _i  .h  ( T `  A )
) ) ) ) ) )  =  ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) )  -  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) ) ) ) )
102101oveq1i 6660 . . . . 5  |-  ( ( ( ( ( B  +h  A )  .ih  ( ( T `  B )  +h  ( T `  A )
) )  -  (
( B  -h  A
)  .ih  ( ( T `  B )  -h  ( T `  A
) ) ) )  +  ( _i  x.  ( ( ( B  +h  ( _i  .h  A ) )  .ih  ( ( T `  B )  +h  (
_i  .h  ( T `  A ) ) ) )  -  ( ( B  -h  ( _i  .h  A ) ) 
.ih  ( ( T `
 B )  -h  ( _i  .h  ( T `  A )
) ) ) ) ) )  /  4
)  =  ( ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) )  -  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) ) ) ) )  /  4
)
1039, 102eqtri 2644 . . . 4  |-  ( B 
.ih  ( T `  A ) )  =  ( ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) )  / 
4 )
104103fveq2i 6194 . . 3  |-  ( * `
 ( B  .ih  ( T `  A ) ) )  =  ( * `  ( ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) )  -  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) ) ) ) )  /  4
) )
105 4ne0 11117 . . . 4  |-  4  =/=  0
1062, 1hvaddcli 27875 . . . . . . . . 9  |-  ( A  +h  B )  e. 
~H
107106, 2, 3, 67lnophmlem1 28875 . . . . . . . 8  |-  ( ( A  +h  B ) 
.ih  ( T `  ( A  +h  B
) ) )  e.  RR
1082, 1hvsubcli 27878 . . . . . . . . 9  |-  ( A  -h  B )  e. 
~H
109108, 2, 3, 67lnophmlem1 28875 . . . . . . . 8  |-  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) )  e.  RR
110107, 109resubcli 10343 . . . . . . 7  |-  ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  e.  RR
111110recni 10052 . . . . . 6  |-  ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  e.  CC
11268, 94resubcli 10343 . . . . . . . 8  |-  ( ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) )  e.  RR
113112recni 10052 . . . . . . 7  |-  ( ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) )  e.  CC
11422, 113mulcli 10045 . . . . . 6  |-  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) )  e.  CC
115111, 114addcli 10044 . . . . 5  |-  ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) )  e.  CC
116 4re 11097 . . . . . 6  |-  4  e.  RR
117116recni 10052 . . . . 5  |-  4  e.  CC
118115, 117cjdivi 13931 . . . 4  |-  ( 4  =/=  0  ->  (
* `  ( (
( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) )  -  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) ) ) ) )  /  4
) )  =  ( ( * `  (
( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) )  -  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) ) ) ) ) )  / 
( * `  4
) ) )
119105, 118ax-mp 5 . . 3  |-  ( * `
 ( ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) )  / 
4 ) )  =  ( ( * `  ( ( ( ( A  +h  B ) 
.ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) ) )  /  ( * ` 
4 ) )
120 cjreim 13900 . . . . . . 7  |-  ( ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B ) 
.ih  ( T `  ( A  -h  B
) ) ) )  e.  RR  /\  (
( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )  -  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )  e.  RR )  ->  ( * `  ( ( ( ( A  +h  B ) 
.ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) ) )  =  ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  -  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) ) )
121110, 112, 120mp2an 708 . . . . . 6  |-  ( * `
 ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) ) )  =  ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  -  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) )
12282, 1, 3, 67lnophmlem1 28875 . . . . . . . . . 10  |-  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  e.  RR
12368, 122resubcli 10343 . . . . . . . . 9  |-  ( ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) )  e.  RR
124123recni 10052 . . . . . . . 8  |-  ( ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) )  e.  CC
12522, 124mulcli 10045 . . . . . . 7  |-  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) )  e.  CC
126111, 125negsubi 10359 . . . . . 6  |-  ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  -u ( _i  x.  (
( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )  -  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) ) ) )  =  ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  -  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) )
127121, 126eqtr4i 2647 . . . . 5  |-  ( * `
 ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) ) )  =  ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  -u (
_i  x.  ( (
( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) )
12822, 113mulneg2i 10477 . . . . . . 7  |-  ( _i  x.  -u ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) )  =  -u ( _i  x.  (
( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )  -  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) ) )
12969, 95negsubdi2i 10367 . . . . . . . 8  |-  -u (
( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )  -  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) )  =  ( ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) )  -  ( ( A  -h  ( _i  .h  B ) )  .ih  ( T `  ( A  -h  ( _i  .h  B ) ) ) ) )
130129oveq2i 6661 . . . . . . 7  |-  ( _i  x.  -u ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) )  =  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) ) ) )
131128, 130eqtr3i 2646 . . . . . 6  |-  -u (
_i  x.  ( (
( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) )  =  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) ) ) )
132131oveq2i 6661 . . . . 5  |-  ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  -u ( _i  x.  (
( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) )  -  ( ( A  +h  ( _i  .h  B ) )  .ih  ( T `  ( A  +h  ( _i  .h  B ) ) ) ) ) ) )  =  ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) ) ) ) )
13313oveq2i 6661 . . . . . . 7  |-  ( ( A  +h  B ) 
.ih  ( T `  ( A  +h  B
) ) )  =  ( ( A  +h  B )  .ih  (
( T `  A
)  +h  ( T `
 B ) ) )
134133, 19oveq12i 6662 . . . . . 6  |-  ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  =  ( ( ( A  +h  B
)  .ih  ( ( T `  A )  +h  ( T `  B
) ) )  -  ( ( A  -h  B )  .ih  (
( T `  A
)  -h  ( T `
 B ) ) ) )
1353lnopaddmuli 28832 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( A  +h  ( _i  .h  B
) ) )  =  ( ( T `  A )  +h  (
_i  .h  ( T `  B ) ) ) )
13622, 2, 1, 135mp3an 1424 . . . . . . . . 9  |-  ( T `
 ( A  +h  ( _i  .h  B
) ) )  =  ( ( T `  A )  +h  (
_i  .h  ( T `  B ) ) )
137136oveq2i 6661 . . . . . . . 8  |-  ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  =  ( ( A  +h  ( _i  .h  B
) )  .ih  (
( T `  A
)  +h  ( _i  .h  ( T `  B ) ) ) )
1383lnopsubmuli 28834 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  ( T `  ( A  -h  ( _i  .h  B
) ) )  =  ( ( T `  A )  -h  (
_i  .h  ( T `  B ) ) ) )
13922, 2, 1, 138mp3an 1424 . . . . . . . . 9  |-  ( T `
 ( A  -h  ( _i  .h  B
) ) )  =  ( ( T `  A )  -h  (
_i  .h  ( T `  B ) ) )
140139oveq2i 6661 . . . . . . . 8  |-  ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  =  ( ( A  -h  ( _i  .h  B
) )  .ih  (
( T `  A
)  -h  ( _i  .h  ( T `  B ) ) ) )
141137, 140oveq12i 6662 . . . . . . 7  |-  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) ) )  =  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( ( T `  A )  +h  ( _i  .h  ( T `  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  (
( T `  A
)  -h  ( _i  .h  ( T `  B ) ) ) ) )
142141oveq2i 6661 . . . . . 6  |-  ( _i  x.  ( ( ( A  +h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) ) ) )  =  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( ( T `  A )  +h  ( _i  .h  ( T `  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  (
( T `  A
)  -h  ( _i  .h  ( T `  B ) ) ) ) ) )
143134, 142oveq12i 6662 . . . . 5  |-  ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( T `  ( A  +h  (
_i  .h  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  ( T `  ( A  -h  ( _i  .h  B
) ) ) ) ) ) )  =  ( ( ( ( A  +h  B ) 
.ih  ( ( T `
 A )  +h  ( T `  B
) ) )  -  ( ( A  -h  B )  .ih  (
( T `  A
)  -h  ( T `
 B ) ) ) )  +  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( ( T `  A )  +h  ( _i  .h  ( T `  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  (
( T `  A
)  -h  ( _i  .h  ( T `  B ) ) ) ) ) ) )
144127, 132, 1433eqtri 2648 . . . 4  |-  ( * `
 ( ( ( ( A  +h  B
)  .ih  ( T `  ( A  +h  B
) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) ) )  =  ( ( ( ( A  +h  B
)  .ih  ( ( T `  A )  +h  ( T `  B
) ) )  -  ( ( A  -h  B )  .ih  (
( T `  A
)  -h  ( T `
 B ) ) ) )  +  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( ( T `  A )  +h  ( _i  .h  ( T `  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  (
( T `  A
)  -h  ( _i  .h  ( T `  B ) ) ) ) ) ) )
145 cjre 13879 . . . . 5  |-  ( 4  e.  RR  ->  (
* `  4 )  =  4 )
146116, 145ax-mp 5 . . . 4  |-  ( * `
 4 )  =  4
147144, 146oveq12i 6662 . . 3  |-  ( ( * `  ( ( ( ( A  +h  B )  .ih  ( T `  ( A  +h  B ) ) )  -  ( ( A  -h  B )  .ih  ( T `  ( A  -h  B ) ) ) )  +  ( _i  x.  ( ( ( A  -h  (
_i  .h  B )
)  .ih  ( T `  ( A  -h  (
_i  .h  B )
) ) )  -  ( ( A  +h  ( _i  .h  B
) )  .ih  ( T `  ( A  +h  ( _i  .h  B
) ) ) ) ) ) ) )  /  ( * ` 
4 ) )  =  ( ( ( ( ( A  +h  B
)  .ih  ( ( T `  A )  +h  ( T `  B
) ) )  -  ( ( A  -h  B )  .ih  (
( T `  A
)  -h  ( T `
 B ) ) ) )  +  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( ( T `  A )  +h  ( _i  .h  ( T `  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  (
( T `  A
)  -h  ( _i  .h  ( T `  B ) ) ) ) ) ) )  /  4 )
148104, 119, 1473eqtrri 2649 . 2  |-  ( ( ( ( ( A  +h  B )  .ih  ( ( T `  A )  +h  ( T `  B )
) )  -  (
( A  -h  B
)  .ih  ( ( T `  A )  -h  ( T `  B
) ) ) )  +  ( _i  x.  ( ( ( A  +h  ( _i  .h  B ) )  .ih  ( ( T `  A )  +h  (
_i  .h  ( T `  B ) ) ) )  -  ( ( A  -h  ( _i  .h  B ) ) 
.ih  ( ( T `
 A )  -h  ( _i  .h  ( T `  B )
) ) ) ) ) )  /  4
)  =  ( * `
 ( B  .ih  ( T `  A ) ) )
1492, 8, 1, 6polid2i 28014 . 2  |-  ( A 
.ih  ( T `  B ) )  =  ( ( ( ( ( A  +h  B
)  .ih  ( ( T `  A )  +h  ( T `  B
) ) )  -  ( ( A  -h  B )  .ih  (
( T `  A
)  -h  ( T `
 B ) ) ) )  +  ( _i  x.  ( ( ( A  +h  (
_i  .h  B )
)  .ih  ( ( T `  A )  +h  ( _i  .h  ( T `  B )
) ) )  -  ( ( A  -h  ( _i  .h  B
) )  .ih  (
( T `  A
)  -h  ( _i  .h  ( T `  B ) ) ) ) ) ) )  /  4 )
1506, 1his1i 27957 . 2  |-  ( ( T `  A ) 
.ih  B )  =  ( * `  ( B  .ih  ( T `  A ) ) )
151148, 149, 1503eqtr4i 2654 1  |-  ( A 
.ih  ( T `  B ) )  =  ( ( T `  A )  .ih  B
)
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   _ici 9938    + caddc 9939    x. cmul 9941    - cmin 10266   -ucneg 10267    / cdiv 10684   4c4 11072   *ccj 13836   ~Hchil 27776    +h cva 27777    .h csm 27778    .ih csp 27779    -h cmv 27782   LinOpclo 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-3 11080  df-4 11081  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828  df-lnop 28700
This theorem is referenced by:  lnophmi  28877
  Copyright terms: Public domain W3C validator