HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcseqi Structured version   Visualization version   Unicode version

Theorem bcseqi 27977
Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 28037. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem7t.1  |-  A  e. 
~H
normlem7t.2  |-  B  e. 
~H
Assertion
Ref Expression
bcseqi  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  <->  ( ( B  .ih  B )  .h  A )  =  ( ( A  .ih  B
)  .h  B ) )

Proof of Theorem bcseqi
StepHypRef Expression
1 normlem7t.2 . . . . . . . 8  |-  B  e. 
~H
21, 1hicli 27938 . . . . . . 7  |-  ( B 
.ih  B )  e.  CC
3 normlem7t.1 . . . . . . 7  |-  A  e. 
~H
42, 3hvmulcli 27871 . . . . . 6  |-  ( ( B  .ih  B )  .h  A )  e. 
~H
53, 1hicli 27938 . . . . . . 7  |-  ( A 
.ih  B )  e.  CC
65, 1hvmulcli 27871 . . . . . 6  |-  ( ( A  .ih  B )  .h  B )  e. 
~H
74, 6, 4, 6normlem9 27975 . . . . 5  |-  ( ( ( ( B  .ih  B )  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) )  .ih  ( ( ( B 
.ih  B )  .h  A )  -h  (
( A  .ih  B
)  .h  B ) ) )  =  ( ( ( ( ( B  .ih  B )  .h  A )  .ih  ( ( B  .ih  B )  .h  A ) )  +  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) ) )  -  ( ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  +  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) ) )
8 oveq1 6657 . . . . . . . . . 10  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( A  .ih  B )  x.  ( B 
.ih  A ) )  x.  ( B  .ih  B ) )  =  ( ( ( A  .ih  A )  x.  ( B 
.ih  B ) )  x.  ( B  .ih  B ) ) )
98eqcomd 2628 . . . . . . . . 9  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( A  .ih  A )  x.  ( B 
.ih  B ) )  x.  ( B  .ih  B ) )  =  ( ( ( A  .ih  B )  x.  ( B 
.ih  A ) )  x.  ( B  .ih  B ) ) )
10 his5 27943 . . . . . . . . . . 11  |-  ( ( ( B  .ih  B
)  e.  CC  /\  ( ( B  .ih  B )  .h  A )  e.  ~H  /\  A  e.  ~H )  ->  (
( ( B  .ih  B )  .h  A ) 
.ih  ( ( B 
.ih  B )  .h  A ) )  =  ( ( * `  ( B  .ih  B ) )  x.  ( ( ( B  .ih  B
)  .h  A ) 
.ih  A ) ) )
112, 4, 3, 10mp3an 1424 . . . . . . . . . 10  |-  ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( B 
.ih  B )  .h  A ) )  =  ( ( * `  ( B  .ih  B ) )  x.  ( ( ( B  .ih  B
)  .h  A ) 
.ih  A ) )
12 hiidrcl 27952 . . . . . . . . . . . 12  |-  ( B  e.  ~H  ->  ( B  .ih  B )  e.  RR )
13 cjre 13879 . . . . . . . . . . . 12  |-  ( ( B  .ih  B )  e.  RR  ->  (
* `  ( B  .ih  B ) )  =  ( B  .ih  B
) )
141, 12, 13mp2b 10 . . . . . . . . . . 11  |-  ( * `
 ( B  .ih  B ) )  =  ( B  .ih  B )
15 ax-his3 27941 . . . . . . . . . . . 12  |-  ( ( ( B  .ih  B
)  e.  CC  /\  A  e.  ~H  /\  A  e.  ~H )  ->  (
( ( B  .ih  B )  .h  A ) 
.ih  A )  =  ( ( B  .ih  B )  x.  ( A 
.ih  A ) ) )
162, 3, 3, 15mp3an 1424 . . . . . . . . . . 11  |-  ( ( ( B  .ih  B
)  .h  A ) 
.ih  A )  =  ( ( B  .ih  B )  x.  ( A 
.ih  A ) )
1714, 16oveq12i 6662 . . . . . . . . . 10  |-  ( ( * `  ( B 
.ih  B ) )  x.  ( ( ( B  .ih  B )  .h  A )  .ih  A ) )  =  ( ( B  .ih  B
)  x.  ( ( B  .ih  B )  x.  ( A  .ih  A ) ) )
183, 3hicli 27938 . . . . . . . . . . . . 13  |-  ( A 
.ih  A )  e.  CC
192, 18mulcli 10045 . . . . . . . . . . . 12  |-  ( ( B  .ih  B )  x.  ( A  .ih  A ) )  e.  CC
202, 19mulcomi 10046 . . . . . . . . . . 11  |-  ( ( B  .ih  B )  x.  ( ( B 
.ih  B )  x.  ( A  .ih  A
) ) )  =  ( ( ( B 
.ih  B )  x.  ( A  .ih  A
) )  x.  ( B  .ih  B ) )
2118, 2mulcomi 10046 . . . . . . . . . . . 12  |-  ( ( A  .ih  A )  x.  ( B  .ih  B ) )  =  ( ( B  .ih  B
)  x.  ( A 
.ih  A ) )
2221oveq1i 6660 . . . . . . . . . . 11  |-  ( ( ( A  .ih  A
)  x.  ( B 
.ih  B ) )  x.  ( B  .ih  B ) )  =  ( ( ( B  .ih  B )  x.  ( A 
.ih  A ) )  x.  ( B  .ih  B ) )
2320, 22eqtr4i 2647 . . . . . . . . . 10  |-  ( ( B  .ih  B )  x.  ( ( B 
.ih  B )  x.  ( A  .ih  A
) ) )  =  ( ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  x.  ( B  .ih  B ) )
2411, 17, 233eqtri 2648 . . . . . . . . 9  |-  ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( B 
.ih  B )  .h  A ) )  =  ( ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  x.  ( B  .ih  B ) )
25 his5 27943 . . . . . . . . . . 11  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( ( B  .ih  B )  .h  A )  e.  ~H  /\  B  e.  ~H )  ->  (
( ( B  .ih  B )  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( * `  ( A  .ih  B ) )  x.  ( ( ( B  .ih  B
)  .h  A ) 
.ih  B ) ) )
265, 4, 1, 25mp3an 1424 . . . . . . . . . 10  |-  ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( * `  ( A  .ih  B ) )  x.  ( ( ( B  .ih  B
)  .h  A ) 
.ih  B ) )
271, 3his1i 27957 . . . . . . . . . . . 12  |-  ( B 
.ih  A )  =  ( * `  ( A  .ih  B ) )
2827eqcomi 2631 . . . . . . . . . . 11  |-  ( * `
 ( A  .ih  B ) )  =  ( B  .ih  A )
29 ax-his3 27941 . . . . . . . . . . . 12  |-  ( ( ( B  .ih  B
)  e.  CC  /\  A  e.  ~H  /\  B  e.  ~H )  ->  (
( ( B  .ih  B )  .h  A ) 
.ih  B )  =  ( ( B  .ih  B )  x.  ( A 
.ih  B ) ) )
302, 3, 1, 29mp3an 1424 . . . . . . . . . . 11  |-  ( ( ( B  .ih  B
)  .h  A ) 
.ih  B )  =  ( ( B  .ih  B )  x.  ( A 
.ih  B ) )
3128, 30oveq12i 6662 . . . . . . . . . 10  |-  ( ( * `  ( A 
.ih  B ) )  x.  ( ( ( B  .ih  B )  .h  A )  .ih  B ) )  =  ( ( B  .ih  A
)  x.  ( ( B  .ih  B )  x.  ( A  .ih  B ) ) )
321, 3hicli 27938 . . . . . . . . . . . 12  |-  ( B 
.ih  A )  e.  CC
332, 5mulcli 10045 . . . . . . . . . . . 12  |-  ( ( B  .ih  B )  x.  ( A  .ih  B ) )  e.  CC
3432, 33mulcomi 10046 . . . . . . . . . . 11  |-  ( ( B  .ih  A )  x.  ( ( B 
.ih  B )  x.  ( A  .ih  B
) ) )  =  ( ( ( B 
.ih  B )  x.  ( A  .ih  B
) )  x.  ( B  .ih  A ) )
352, 5, 32mulassi 10049 . . . . . . . . . . 11  |-  ( ( ( B  .ih  B
)  x.  ( A 
.ih  B ) )  x.  ( B  .ih  A ) )  =  ( ( B  .ih  B
)  x.  ( ( A  .ih  B )  x.  ( B  .ih  A ) ) )
365, 32mulcli 10045 . . . . . . . . . . . 12  |-  ( ( A  .ih  B )  x.  ( B  .ih  A ) )  e.  CC
372, 36mulcomi 10046 . . . . . . . . . . 11  |-  ( ( B  .ih  B )  x.  ( ( A 
.ih  B )  x.  ( B  .ih  A
) ) )  =  ( ( ( A 
.ih  B )  x.  ( B  .ih  A
) )  x.  ( B  .ih  B ) )
3834, 35, 373eqtri 2648 . . . . . . . . . 10  |-  ( ( B  .ih  A )  x.  ( ( B 
.ih  B )  x.  ( A  .ih  B
) ) )  =  ( ( ( A 
.ih  B )  x.  ( B  .ih  A
) )  x.  ( B  .ih  B ) )
3926, 31, 383eqtri 2648 . . . . . . . . 9  |-  ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( ( A 
.ih  B )  x.  ( B  .ih  A
) )  x.  ( B  .ih  B ) )
409, 24, 393eqtr4g 2681 . . . . . . . 8  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( B  .ih  B )  .h  A ) 
.ih  ( ( B 
.ih  B )  .h  A ) )  =  ( ( ( B 
.ih  B )  .h  A )  .ih  (
( A  .ih  B
)  .h  B ) ) )
41 ax-his3 27941 . . . . . . . . . . . 12  |-  ( ( ( A  .ih  B
)  e.  CC  /\  B  e.  ~H  /\  A  e.  ~H )  ->  (
( ( A  .ih  B )  .h  B ) 
.ih  A )  =  ( ( A  .ih  B )  x.  ( B 
.ih  A ) ) )
425, 1, 3, 41mp3an 1424 . . . . . . . . . . 11  |-  ( ( ( A  .ih  B
)  .h  B ) 
.ih  A )  =  ( ( A  .ih  B )  x.  ( B 
.ih  A ) )
4314, 42oveq12i 6662 . . . . . . . . . 10  |-  ( ( * `  ( B 
.ih  B ) )  x.  ( ( ( A  .ih  B )  .h  B )  .ih  A ) )  =  ( ( B  .ih  B
)  x.  ( ( A  .ih  B )  x.  ( B  .ih  A ) ) )
44 his5 27943 . . . . . . . . . . 11  |-  ( ( ( B  .ih  B
)  e.  CC  /\  ( ( A  .ih  B )  .h  B )  e.  ~H  /\  A  e.  ~H )  ->  (
( ( A  .ih  B )  .h  B ) 
.ih  ( ( B 
.ih  B )  .h  A ) )  =  ( ( * `  ( B  .ih  B ) )  x.  ( ( ( A  .ih  B
)  .h  B ) 
.ih  A ) ) )
452, 6, 3, 44mp3an 1424 . . . . . . . . . 10  |-  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( B 
.ih  B )  .h  A ) )  =  ( ( * `  ( B  .ih  B ) )  x.  ( ( ( A  .ih  B
)  .h  B ) 
.ih  A ) )
46 his5 27943 . . . . . . . . . . . 12  |-  ( ( ( A  .ih  B
)  e.  CC  /\  ( ( A  .ih  B )  .h  B )  e.  ~H  /\  B  e.  ~H )  ->  (
( ( A  .ih  B )  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( * `  ( A  .ih  B ) )  x.  ( ( ( A  .ih  B
)  .h  B ) 
.ih  B ) ) )
475, 6, 1, 46mp3an 1424 . . . . . . . . . . 11  |-  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( * `  ( A  .ih  B ) )  x.  ( ( ( A  .ih  B
)  .h  B ) 
.ih  B ) )
48 ax-his3 27941 . . . . . . . . . . . . 13  |-  ( ( ( A  .ih  B
)  e.  CC  /\  B  e.  ~H  /\  B  e.  ~H )  ->  (
( ( A  .ih  B )  .h  B ) 
.ih  B )  =  ( ( A  .ih  B )  x.  ( B 
.ih  B ) ) )
495, 1, 1, 48mp3an 1424 . . . . . . . . . . . 12  |-  ( ( ( A  .ih  B
)  .h  B ) 
.ih  B )  =  ( ( A  .ih  B )  x.  ( B 
.ih  B ) )
5028, 49oveq12i 6662 . . . . . . . . . . 11  |-  ( ( * `  ( A 
.ih  B ) )  x.  ( ( ( A  .ih  B )  .h  B )  .ih  B ) )  =  ( ( B  .ih  A
)  x.  ( ( A  .ih  B )  x.  ( B  .ih  B ) ) )
515, 2mulcli 10045 . . . . . . . . . . . . 13  |-  ( ( A  .ih  B )  x.  ( B  .ih  B ) )  e.  CC
5232, 51mulcomi 10046 . . . . . . . . . . . 12  |-  ( ( B  .ih  A )  x.  ( ( A 
.ih  B )  x.  ( B  .ih  B
) ) )  =  ( ( ( A 
.ih  B )  x.  ( B  .ih  B
) )  x.  ( B  .ih  A ) )
535, 2, 32mul32i 10232 . . . . . . . . . . . 12  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  B ) )  x.  ( B  .ih  A ) )  =  ( ( ( A  .ih  B )  x.  ( B 
.ih  A ) )  x.  ( B  .ih  B ) )
5436, 2mulcomi 10046 . . . . . . . . . . . 12  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  x.  ( B  .ih  B ) )  =  ( ( B  .ih  B
)  x.  ( ( A  .ih  B )  x.  ( B  .ih  A ) ) )
5552, 53, 543eqtri 2648 . . . . . . . . . . 11  |-  ( ( B  .ih  A )  x.  ( ( A 
.ih  B )  x.  ( B  .ih  B
) ) )  =  ( ( B  .ih  B )  x.  ( ( A  .ih  B )  x.  ( B  .ih  A ) ) )
5647, 50, 553eqtri 2648 . . . . . . . . . 10  |-  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( B  .ih  B )  x.  ( ( A  .ih  B )  x.  ( B  .ih  A ) ) )
5743, 45, 563eqtr4ri 2655 . . . . . . . . 9  |-  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) )
5857a1i 11 . . . . . . . 8  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( A  .ih  B )  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  =  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) )
5940, 58oveq12d 6668 . . . . . . 7  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( ( B 
.ih  B )  .h  A )  .ih  (
( B  .ih  B
)  .h  A ) )  +  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) ) )  =  ( ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  +  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) ) )
6059oveq1d 6665 . . . . . 6  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( ( ( B  .ih  B )  .h  A )  .ih  ( ( B  .ih  B )  .h  A ) )  +  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) ) )  -  ( ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  +  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) ) )  =  ( ( ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  +  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) )  -  (
( ( ( B 
.ih  B )  .h  A )  .ih  (
( A  .ih  B
)  .h  B ) )  +  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( B 
.ih  B )  .h  A ) ) ) ) )
614, 6hicli 27938 . . . . . . . 8  |-  ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  e.  CC
626, 4hicli 27938 . . . . . . . 8  |-  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( B 
.ih  B )  .h  A ) )  e.  CC
6361, 62addcli 10044 . . . . . . 7  |-  ( ( ( ( B  .ih  B )  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  +  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) )  e.  CC
6463subidi 10352 . . . . . 6  |-  ( ( ( ( ( B 
.ih  B )  .h  A )  .ih  (
( A  .ih  B
)  .h  B ) )  +  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( B 
.ih  B )  .h  A ) ) )  -  ( ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  +  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) ) )  =  0
6560, 64syl6eq 2672 . . . . 5  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( ( ( B  .ih  B )  .h  A )  .ih  ( ( B  .ih  B )  .h  A ) )  +  ( ( ( A  .ih  B
)  .h  B ) 
.ih  ( ( A 
.ih  B )  .h  B ) ) )  -  ( ( ( ( B  .ih  B
)  .h  A ) 
.ih  ( ( A 
.ih  B )  .h  B ) )  +  ( ( ( A 
.ih  B )  .h  B )  .ih  (
( B  .ih  B
)  .h  A ) ) ) )  =  0 )
667, 65syl5eq 2668 . . . 4  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( ( B 
.ih  B )  .h  A )  -h  (
( A  .ih  B
)  .h  B ) )  .ih  ( ( ( B  .ih  B
)  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) ) )  =  0 )
674, 6hvsubcli 27878 . . . . 5  |-  ( ( ( B  .ih  B
)  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) )  e. 
~H
68 his6 27956 . . . . 5  |-  ( ( ( ( B  .ih  B )  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) )  e. 
~H  ->  ( ( ( ( ( B  .ih  B )  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) )  .ih  ( ( ( B 
.ih  B )  .h  A )  -h  (
( A  .ih  B
)  .h  B ) ) )  =  0  <-> 
( ( ( B 
.ih  B )  .h  A )  -h  (
( A  .ih  B
)  .h  B ) )  =  0h )
)
6967, 68ax-mp 5 . . . 4  |-  ( ( ( ( ( B 
.ih  B )  .h  A )  -h  (
( A  .ih  B
)  .h  B ) )  .ih  ( ( ( B  .ih  B
)  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) ) )  =  0  <->  ( (
( B  .ih  B
)  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) )  =  0h )
7066, 69sylib 208 . . 3  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( ( B  .ih  B )  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) )  =  0h )
714, 6hvsubeq0i 27920 . . 3  |-  ( ( ( ( B  .ih  B )  .h  A )  -h  ( ( A 
.ih  B )  .h  B ) )  =  0h  <->  ( ( B 
.ih  B )  .h  A )  =  ( ( A  .ih  B
)  .h  B ) )
7270, 71sylib 208 . 2  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  ->  (
( B  .ih  B
)  .h  A )  =  ( ( A 
.ih  B )  .h  B ) )
73 oveq1 6657 . . . 4  |-  ( ( ( B  .ih  B
)  .h  A )  =  ( ( A 
.ih  B )  .h  B )  ->  (
( ( B  .ih  B )  .h  A ) 
.ih  A )  =  ( ( ( A 
.ih  B )  .h  B )  .ih  A
) )
7421, 16eqtr4i 2647 . . . 4  |-  ( ( A  .ih  A )  x.  ( B  .ih  B ) )  =  ( ( ( B  .ih  B )  .h  A ) 
.ih  A )
7542eqcomi 2631 . . . 4  |-  ( ( A  .ih  B )  x.  ( B  .ih  A ) )  =  ( ( ( A  .ih  B )  .h  B ) 
.ih  A )
7673, 74, 753eqtr4g 2681 . . 3  |-  ( ( ( B  .ih  B
)  .h  A )  =  ( ( A 
.ih  B )  .h  B )  ->  (
( A  .ih  A
)  x.  ( B 
.ih  B ) )  =  ( ( A 
.ih  B )  x.  ( B  .ih  A
) ) )
7776eqcomd 2628 . 2  |-  ( ( ( B  .ih  B
)  .h  A )  =  ( ( A 
.ih  B )  .h  B )  ->  (
( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) ) )
7872, 77impbii 199 1  |-  ( ( ( A  .ih  B
)  x.  ( B 
.ih  A ) )  =  ( ( A 
.ih  A )  x.  ( B  .ih  B
) )  <->  ( ( B  .ih  B )  .h  A )  =  ( ( A  .ih  B
)  .h  B ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941    - cmin 10266   *ccj 13836   ~Hchil 27776    .h csm 27778    .ih csp 27779   0hc0v 27781    -h cmv 27782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-2 11079  df-cj 13839  df-re 13840  df-im 13841  df-hvsub 27828
This theorem is referenced by:  h1de2i  28412
  Copyright terms: Public domain W3C validator