Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpnannanb Structured version   Visualization version   Unicode version

Theorem ifpnannanb 37852
Description: Factor conditional logic operator over nand in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
Assertion
Ref Expression
ifpnannanb  |-  (if- (
ph ,  ( ps 
-/\  ch ) ,  ( th  -/\  ta )
)  <->  (if- ( ph ,  ps ,  th )  -/\ if- ( ph ,  ch ,  ta ) ) )

Proof of Theorem ifpnannanb
StepHypRef Expression
1 df-nan 1448 . . 3  |-  ( ( ps  -/\  ch )  <->  -.  ( ps  /\  ch ) )
2 df-nan 1448 . . 3  |-  ( ( th  -/\  ta )  <->  -.  ( th  /\  ta ) )
3 ifpbi23 37817 . . 3  |-  ( ( ( ( ps  -/\  ch )  <->  -.  ( ps  /\ 
ch ) )  /\  ( ( th  -/\  ta )  <->  -.  ( th  /\  ta ) ) )  -> 
(if- ( ph , 
( ps  -/\  ch ) ,  ( th  -/\  ta )
)  <-> if- ( ph ,  -.  ( ps  /\  ch ) ,  -.  ( th  /\  ta ) ) ) )
41, 2, 3mp2an 708 . 2  |-  (if- (
ph ,  ( ps 
-/\  ch ) ,  ( th  -/\  ta )
)  <-> if- ( ph ,  -.  ( ps  /\  ch ) ,  -.  ( th  /\  ta ) ) )
5 ifpananb 37851 . . . 4  |-  (if- (
ph ,  ( ps 
/\  ch ) ,  ( th  /\  ta )
)  <->  (if- ( ph ,  ps ,  th )  /\ if- ( ph ,  ch ,  ta ) ) )
65notbii 310 . . 3  |-  ( -. if- ( ph ,  ( ps  /\  ch ) ,  ( th  /\  ta ) )  <->  -.  (if- ( ph ,  ps ,  th )  /\ if- ( ph ,  ch ,  ta )
) )
7 ifpnotnotb 37824 . . 3  |-  (if- (
ph ,  -.  ( ps  /\  ch ) ,  -.  ( th  /\  ta ) )  <->  -. if- ( ph ,  ( ps  /\  ch ) ,  ( th 
/\  ta ) ) )
8 df-nan 1448 . . 3  |-  ( (if- ( ph ,  ps ,  th )  -/\ if- ( ph ,  ch ,  ta )
)  <->  -.  (if- ( ph ,  ps ,  th )  /\ if- ( ph ,  ch ,  ta )
) )
96, 7, 83bitr4i 292 . 2  |-  (if- (
ph ,  -.  ( ps  /\  ch ) ,  -.  ( th  /\  ta ) )  <->  (if- ( ph ,  ps ,  th )  -/\ if- ( ph ,  ch ,  ta )
) )
104, 9bitri 264 1  |-  (if- (
ph ,  ( ps 
-/\  ch ) ,  ( th  -/\  ta )
)  <->  (if- ( ph ,  ps ,  th )  -/\ if- ( ph ,  ch ,  ta ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384  if-wif 1012    -/\ wnan 1447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-nan 1448
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator