| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpananb | Structured version Visualization version Unicode version | ||
| Description: Factor conditional logic operator over conjunction in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpananb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anor 510 |
. . 3
| |
| 2 | anor 510 |
. . 3
| |
| 3 | ifpbi23 37817 |
. . 3
| |
| 4 | 1, 2, 3 | mp2an 708 |
. 2
|
| 5 | ifpororb 37850 |
. . . . 5
| |
| 6 | ifpnotnotb 37824 |
. . . . . 6
| |
| 7 | ifpnotnotb 37824 |
. . . . . 6
| |
| 8 | 6, 7 | orbi12i 543 |
. . . . 5
|
| 9 | 5, 8 | bitri 264 |
. . . 4
|
| 10 | 9 | notbii 310 |
. . 3
|
| 11 | ifpnotnotb 37824 |
. . 3
| |
| 12 | anor 510 |
. . 3
| |
| 13 | 10, 11, 12 | 3bitr4i 292 |
. 2
|
| 14 | 4, 13 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ifp 1013 |
| This theorem is referenced by: ifpnannanb 37852 |
| Copyright terms: Public domain | W3C validator |