MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpw Structured version   Visualization version   Unicode version

Theorem iinpw 4617
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Distinct variable group:    x, A

Proof of Theorem iinpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 4493 . . . 4  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  C_  x )
2 selpw 4165 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
32ralbii 2980 . . . 4  |-  ( A. x  e.  A  y  e.  ~P x  <->  A. x  e.  A  y  C_  x )
41, 3bitr4i 267 . . 3  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  e.  ~P x )
5 selpw 4165 . . 3  |-  ( y  e.  ~P |^| A  <->  y 
C_  |^| A )
6 vex 3203 . . . 4  |-  y  e. 
_V
7 eliin 4525 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x ) )
86, 7ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x
)
94, 5, 83bitr4i 292 . 2  |-  ( y  e.  ~P |^| A  <->  y  e.  |^|_ x  e.  A  ~P x )
109eqriv 2619 1  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158   |^|cint 4475   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-int 4476  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator