MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinpw Structured version   Visualization version   GIF version

Theorem iinpw 4617
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem iinpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 4493 . . . 4 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
2 selpw 4165 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
32ralbii 2980 . . . 4 (∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦𝑥)
41, 3bitr4i 267 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
5 selpw 4165 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
6 vex 3203 . . . 4 𝑦 ∈ V
7 eliin 4525 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥))
86, 7ax-mp 5 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
94, 5, 83bitr4i 292 . 2 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥)
109eqriv 2619 1 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  𝒫 cpw 4158   cint 4475   ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-int 4476  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator