Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iinssf Structured version   Visualization version   Unicode version

Theorem iinssf 39327
Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
iinssf.1  |-  F/_ x C
Assertion
Ref Expression
iinssf  |-  ( E. x  e.  A  B  C_  C  ->  |^|_ x  e.  A  B  C_  C
)

Proof of Theorem iinssf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4  |-  y  e. 
_V
2 eliin 4525 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  B  <->  A. x  e.  A  y  e.  B ) )
31, 2ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  B 
<-> 
A. x  e.  A  y  e.  B )
4 ssel 3597 . . . . 5  |-  ( B 
C_  C  ->  (
y  e.  B  -> 
y  e.  C ) )
54reximi 3011 . . . 4  |-  ( E. x  e.  A  B  C_  C  ->  E. x  e.  A  ( y  e.  B  ->  y  e.  C ) )
6 nfcv 2764 . . . . . 6  |-  F/_ x
y
7 iinssf.1 . . . . . 6  |-  F/_ x C
86, 7nfel 2777 . . . . 5  |-  F/ x  y  e.  C
98r19.36vf 39324 . . . 4  |-  ( E. x  e.  A  ( y  e.  B  -> 
y  e.  C )  ->  ( A. x  e.  A  y  e.  B  ->  y  e.  C
) )
105, 9syl 17 . . 3  |-  ( E. x  e.  A  B  C_  C  ->  ( A. x  e.  A  y  e.  B  ->  y  e.  C ) )
113, 10syl5bi 232 . 2  |-  ( E. x  e.  A  B  C_  C  ->  ( y  e.  |^|_ x  e.  A  B  ->  y  e.  C
) )
1211ssrdv 3609 1  |-  ( E. x  e.  A  B  C_  C  ->  |^|_ x  e.  A  B  C_  C
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    e. wcel 1990   F/_wnfc 2751   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-iin 4523
This theorem is referenced by:  iinssdf  39328
  Copyright terms: Public domain W3C validator