| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralimda | Structured version Visualization version Unicode version | ||
| Description: Deduction quantifying both antecedent and consequent. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| ralimda.1 |
|
| ralimda.2 |
|
| Ref | Expression |
|---|---|
| ralimda |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralimda.1 |
. . . 4
| |
| 2 | nfra1 2941 |
. . . 4
| |
| 3 | 1, 2 | nfan 1828 |
. . 3
|
| 4 | id 22 |
. . . . 5
| |
| 5 | 4 | adantlr 751 |
. . . 4
|
| 6 | rspa 2930 |
. . . . 5
| |
| 7 | 6 | adantll 750 |
. . . 4
|
| 8 | ralimda.2 |
. . . 4
| |
| 9 | 5, 7, 8 | sylc 65 |
. . 3
|
| 10 | 3, 9 | ralrimia 39315 |
. 2
|
| 11 | 10 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-ral 2917 |
| This theorem is referenced by: xlimmnfvlem1 40058 xlimmnfvlem2 40059 xlimpnfvlem1 40062 xlimpnfvlem2 40063 |
| Copyright terms: Public domain | W3C validator |