Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralimda Structured version   Visualization version   Unicode version

Theorem ralimda 39326
Description: Deduction quantifying both antecedent and consequent. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
ralimda.1  |-  F/ x ph
ralimda.2  |-  ( (
ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
ralimda  |-  ( ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch )
)

Proof of Theorem ralimda
StepHypRef Expression
1 ralimda.1 . . . 4  |-  F/ x ph
2 nfra1 2941 . . . 4  |-  F/ x A. x  e.  A  ps
31, 2nfan 1828 . . 3  |-  F/ x
( ph  /\  A. x  e.  A  ps )
4 id 22 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( ph  /\  x  e.  A
) )
54adantlr 751 . . . 4  |-  ( ( ( ph  /\  A. x  e.  A  ps )  /\  x  e.  A
)  ->  ( ph  /\  x  e.  A ) )
6 rspa 2930 . . . . 5  |-  ( ( A. x  e.  A  ps  /\  x  e.  A
)  ->  ps )
76adantll 750 . . . 4  |-  ( ( ( ph  /\  A. x  e.  A  ps )  /\  x  e.  A
)  ->  ps )
8 ralimda.2 . . . 4  |-  ( (
ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )
95, 7, 8sylc 65 . . 3  |-  ( ( ( ph  /\  A. x  e.  A  ps )  /\  x  e.  A
)  ->  ch )
103, 9ralrimia 39315 . 2  |-  ( (
ph  /\  A. x  e.  A  ps )  ->  A. x  e.  A  ch )
1110ex 450 1  |-  ( ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   F/wnf 1708    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-ral 2917
This theorem is referenced by:  xlimmnfvlem1  40058  xlimmnfvlem2  40059  xlimpnfvlem1  40062  xlimpnfvlem2  40063
  Copyright terms: Public domain W3C validator