MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinun2 Structured version   Visualization version   Unicode version

Theorem iinun2 4586
Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4574 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
iinun2  |-  |^|_ x  e.  A  ( B  u.  C )  =  ( B  u.  |^|_ x  e.  A  C )
Distinct variable group:    x, B
Allowed substitution hints:    A( x)    C( x)

Proof of Theorem iinun2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 r19.32v 3083 . . . 4  |-  ( A. x  e.  A  (
y  e.  B  \/  y  e.  C )  <->  ( y  e.  B  \/  A. x  e.  A  y  e.  C ) )
2 elun 3753 . . . . 5  |-  ( y  e.  ( B  u.  C )  <->  ( y  e.  B  \/  y  e.  C ) )
32ralbii 2980 . . . 4  |-  ( A. x  e.  A  y  e.  ( B  u.  C
)  <->  A. x  e.  A  ( y  e.  B  \/  y  e.  C
) )
4 vex 3203 . . . . . 6  |-  y  e. 
_V
5 eliin 4525 . . . . . 6  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  C  <->  A. x  e.  A  y  e.  C ) )
64, 5ax-mp 5 . . . . 5  |-  ( y  e.  |^|_ x  e.  A  C 
<-> 
A. x  e.  A  y  e.  C )
76orbi2i 541 . . . 4  |-  ( ( y  e.  B  \/  y  e.  |^|_ x  e.  A  C )  <->  ( y  e.  B  \/  A. x  e.  A  y  e.  C ) )
81, 3, 73bitr4i 292 . . 3  |-  ( A. x  e.  A  y  e.  ( B  u.  C
)  <->  ( y  e.  B  \/  y  e. 
|^|_ x  e.  A  C ) )
9 eliin 4525 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ( B  u.  C )  <->  A. x  e.  A  y  e.  ( B  u.  C
) ) )
104, 9ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ( B  u.  C
)  <->  A. x  e.  A  y  e.  ( B  u.  C ) )
11 elun 3753 . . 3  |-  ( y  e.  ( B  u.  |^|_
x  e.  A  C
)  <->  ( y  e.  B  \/  y  e. 
|^|_ x  e.  A  C ) )
128, 10, 113bitr4i 292 . 2  |-  ( y  e.  |^|_ x  e.  A  ( B  u.  C
)  <->  y  e.  ( B  u.  |^|_ x  e.  A  C )
)
1312eqriv 2619 1  |-  |^|_ x  e.  A  ( B  u.  C )  =  ( B  u.  |^|_ x  e.  A  C )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    u. cun 3572   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-un 3579  df-iin 4523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator