| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iinun2 | Structured version Visualization version GIF version | ||
| Description: Indexed intersection of union. Generalization of half of theorem "Distributive laws" in [Enderton] p. 30. Use intiin 4574 to recover Enderton's theorem. (Contributed by NM, 19-Aug-2004.) |
| Ref | Expression |
|---|---|
| iinun2 | ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.32v 3083 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 2 | elun 3753 | . . . . 5 ⊢ (𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) | |
| 3 | 2 | ralbii 2980 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ 𝐶)) |
| 4 | vex 3203 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 5 | eliin 4525 | . . . . . 6 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) | |
| 6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) |
| 7 | 6 | orbi2i 541 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
| 8 | 1, 3, 7 | 3bitr4i 292 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 9 | eliin 4525 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶))) | |
| 10 | 4, 9 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ (𝐵 ∪ 𝐶)) |
| 11 | elun 3753 | . . 3 ⊢ (𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) ↔ (𝑦 ∈ 𝐵 ∨ 𝑦 ∈ ∩ 𝑥 ∈ 𝐴 𝐶)) | |
| 12 | 8, 10, 11 | 3bitr4i 292 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) ↔ 𝑦 ∈ (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶)) |
| 13 | 12 | eqriv 2619 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 (𝐵 ∪ 𝐶) = (𝐵 ∪ ∩ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∨ wo 383 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∪ cun 3572 ∩ ciin 4521 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-un 3579 df-iin 4523 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |