Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inex3 Structured version   Visualization version   Unicode version

Theorem inex3 34106
Description: More general sethood condition for the intersection relation. (Contributed by Peter Mazsa, 24-Nov-2019.)
Assertion
Ref Expression
inex3  |-  ( ( A  e.  V  \/  B  e.  W )  ->  ( A  i^i  B
)  e.  _V )

Proof of Theorem inex3
StepHypRef Expression
1 inex1g 4801 . 2  |-  ( A  e.  V  ->  ( A  i^i  B )  e. 
_V )
2 inex2ALTV 34105 . 2  |-  ( B  e.  W  ->  ( A  i^i  B )  e. 
_V )
31, 2jaoi 394 1  |-  ( ( A  e.  V  \/  B  e.  W )  ->  ( A  i^i  B
)  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    e. wcel 1990   _Vcvv 3200    i^i cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator