MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infeq2 Structured version   Visualization version   Unicode version

Theorem infeq2 8385
Description: Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
Assertion
Ref Expression
infeq2  |-  ( B  =  C  -> inf ( A ,  B ,  R
)  = inf ( A ,  C ,  R
) )

Proof of Theorem infeq2
StepHypRef Expression
1 supeq2 8354 . 2  |-  ( B  =  C  ->  sup ( A ,  B ,  `' R )  =  sup ( A ,  C ,  `' R ) )
2 df-inf 8349 . 2  |- inf ( A ,  B ,  R
)  =  sup ( A ,  B ,  `' R )
3 df-inf 8349 . 2  |- inf ( A ,  C ,  R
)  =  sup ( A ,  C ,  `' R )
41, 2, 33eqtr4g 2681 1  |-  ( B  =  C  -> inf ( A ,  B ,  R
)  = inf ( A ,  C ,  R
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483   `'ccnv 5113   supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-uni 4437  df-sup 8348  df-inf 8349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator