| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-inf | Structured version Visualization version Unicode version | ||
| Description: Define the infimum of
class |
| Ref | Expression |
|---|---|
| df-inf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | cB |
. . 3
| |
| 3 | cR |
. . 3
| |
| 4 | 1, 2, 3 | cinf 8347 |
. 2
|
| 5 | 3 | ccnv 5113 |
. . 3
|
| 6 | 1, 2, 5 | csup 8346 |
. 2
|
| 7 | 4, 6 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: infeq1 8382 infeq2 8385 infeq3 8386 infeq123d 8387 nfinf 8388 infexd 8389 eqinf 8390 infval 8392 infcl 8394 inflb 8395 infglb 8396 infglbb 8397 fiinfcl 8407 infltoreq 8408 inf00 8411 infempty 8412 infiso 8413 dfinfre 11004 infrenegsup 11006 tosglb 29670 rencldnfilem 37384 |
| Copyright terms: Public domain | W3C validator |