HomeHome Metamath Proof Explorer
Theorem List (p. 84 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 8301-8400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremressuppfi 8301 If the support of the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finite, the support of the function itself is finite. (Contributed by AV, 22-Apr-2019.)
 |-  ( ph  ->  ( dom  F  \  B )  e.  Fin )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  G  =  ( F  |`  B ) )   &    |-  ( ph  ->  ( G supp  Z )  e. 
 Fin )   &    |-  ( ph  ->  Z  e.  V )   =>    |-  ( ph  ->  ( F supp  Z )  e. 
 Fin )
 
Theoremresfsupp 8302 If the restriction of a function by a set which, subtracted from the domain of the function so that its difference is finitely supported, the function itself is finitely supported. (Contributed by AV, 27-May-2019.)
 |-  ( ph  ->  ( dom  F  \  B )  e.  Fin )   &    |-  ( ph  ->  F  e.  W )   &    |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  G  =  ( F  |`  B ) )   &    |-  ( ph  ->  G finSupp  Z )   &    |-  ( ph  ->  Z  e.  V )   =>    |-  ( ph  ->  F finSupp  Z )
 
Theoremresfifsupp 8303 The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019.)
 |-  ( ph  ->  Fun  F )   &    |-  ( ph  ->  X  e.  Fin )   &    |-  ( ph  ->  Z  e.  V )   =>    |-  ( ph  ->  ( F  |`  X ) finSupp  Z )
 
Theoremfrnfsuppbi 8304 Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.)
 |-  ( ( I  e.  V  /\  Z  e.  W )  ->  ( F : I --> S  ->  ( F finSupp  Z  <->  ( `' F " ( S  \  { Z } ) )  e. 
 Fin ) ) )
 
Theoremfsuppmptif 8305* A function mapping an argument to either a value of a finitely supported function or zero is finitely supported. (Contributed by AV, 6-Jun-2019.)
 |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  Z  e.  W )   &    |-  ( ph  ->  F finSupp  Z )   =>    |-  ( ph  ->  (
 k  e.  A  |->  if ( k  e.  D ,  ( F `  k
 ) ,  Z ) ) finSupp  Z )
 
Theoremfsuppcolem 8306 Lemma for fsuppco 8307. Formula building theorem for finite supports: rearranging the index set. (Contributed by Stefan O'Rear, 21-Mar-2015.)
 |-  ( ph  ->  ( `' F " ( _V  \  { Z } )
 )  e.  Fin )   &    |-  ( ph  ->  G : X -1-1-> Y )   =>    |-  ( ph  ->  ( `' ( F  o.  G ) " ( _V  \  { Z } ) )  e. 
 Fin )
 
Theoremfsuppco 8307 The composition of a 1-1 function with a finitely supported function is finitely supported. (Contributed by AV, 28-May-2019.)
 |-  ( ph  ->  F finSupp  Z )   &    |-  ( ph  ->  G : X -1-1-> Y )   &    |-  ( ph  ->  Z  e.  W )   &    |-  ( ph  ->  F  e.  V )   =>    |-  ( ph  ->  ( F  o.  G ) finSupp  Z )
 
Theoremfsuppco2 8308 The composition of a function which maps the zero to zero with a finitely supported function is finitely supported. This is not only a special case of fsuppcor 8309 because it does not require that the "zero" is an element of the range of the finitely supported function. (Contributed by AV, 6-Jun-2019.)
 |-  ( ph  ->  Z  e.  W )   &    |-  ( ph  ->  F : A --> B )   &    |-  ( ph  ->  G : B
 --> B )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  F finSupp  Z )   &    |-  ( ph  ->  ( G `  Z )  =  Z )   =>    |-  ( ph  ->  ( G  o.  F ) finSupp  Z )
 
Theoremfsuppcor 8309 The composition of a function which maps the zero of the range of a finitely supported function to the zero of its range with this finitely supported function is finitely supported. (Contributed by AV, 6-Jun-2019.)
 |-  ( ph  ->  .0.  e.  W )   &    |-  ( ph  ->  Z  e.  B )   &    |-  ( ph  ->  F : A --> C )   &    |-  ( ph  ->  G : B --> D )   &    |-  ( ph  ->  C  C_  B )   &    |-  ( ph  ->  A  e.  U )   &    |-  ( ph  ->  B  e.  V )   &    |-  ( ph  ->  F finSupp  Z )   &    |-  ( ph  ->  ( G `  Z )  =  .0.  )   =>    |-  ( ph  ->  ( G  o.  F ) finSupp  .0.  )
 
Theoremmapfienlem1 8310* Lemma 1 for mapfien 8313. (Contributed by AV, 3-Jul-2019.)
 |-  S  =  { x  e.  ( B  ^m  A )  |  x finSupp  Z }   &    |-  T  =  { x  e.  ( D  ^m  C )  |  x finSupp  W }   &    |-  W  =  ( G `  Z )   &    |-  ( ph  ->  F : C
 -1-1-onto-> A )   &    |-  ( ph  ->  G : B -1-1-onto-> D )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  D  e.  _V )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ( ph  /\  f  e.  S )  ->  ( G  o.  ( f  o.  F ) ) finSupp  W )
 
Theoremmapfienlem2 8311* Lemma 2 for mapfien 8313. (Contributed by AV, 3-Jul-2019.)
 |-  S  =  { x  e.  ( B  ^m  A )  |  x finSupp  Z }   &    |-  T  =  { x  e.  ( D  ^m  C )  |  x finSupp  W }   &    |-  W  =  ( G `  Z )   &    |-  ( ph  ->  F : C
 -1-1-onto-> A )   &    |-  ( ph  ->  G : B -1-1-onto-> D )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  D  e.  _V )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ( ph  /\  g  e.  T )  ->  (
 ( `' G  o.  g )  o.  `' F ) finSupp  Z )
 
Theoremmapfienlem3 8312* Lemma 3 for mapfien 8313. (Contributed by AV, 3-Jul-2019.)
 |-  S  =  { x  e.  ( B  ^m  A )  |  x finSupp  Z }   &    |-  T  =  { x  e.  ( D  ^m  C )  |  x finSupp  W }   &    |-  W  =  ( G `  Z )   &    |-  ( ph  ->  F : C
 -1-1-onto-> A )   &    |-  ( ph  ->  G : B -1-1-onto-> D )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  D  e.  _V )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ( ph  /\  g  e.  T )  ->  (
 ( `' G  o.  g )  o.  `' F )  e.  S )
 
Theoremmapfien 8313* A bijection of the base sets induces a bijection on the set of finitely supported functions. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
 |-  S  =  { x  e.  ( B  ^m  A )  |  x finSupp  Z }   &    |-  T  =  { x  e.  ( D  ^m  C )  |  x finSupp  W }   &    |-  W  =  ( G `  Z )   &    |-  ( ph  ->  F : C
 -1-1-onto-> A )   &    |-  ( ph  ->  G : B -1-1-onto-> D )   &    |-  ( ph  ->  A  e.  _V )   &    |-  ( ph  ->  B  e.  _V )   &    |-  ( ph  ->  C  e.  _V )   &    |-  ( ph  ->  D  e.  _V )   &    |-  ( ph  ->  Z  e.  B )   =>    |-  ( ph  ->  (
 f  e.  S  |->  ( G  o.  ( f  o.  F ) ) ) : S -1-1-onto-> T )
 
Theoremmapfien2 8314* Equinumerousity relation for sets of finitely supported functions. (Contributed by Stefan O'Rear, 9-Jul-2015.) (Revised by AV, 7-Jul-2019.)
 |-  S  =  { x  e.  ( B  ^m  A )  |  x finSupp  .0.  }   &    |-  T  =  { x  e.  ( D  ^m  C )  |  x finSupp  W }   &    |-  ( ph  ->  A 
 ~~  C )   &    |-  ( ph  ->  B  ~~  D )   &    |-  ( ph  ->  .0.  e.  B )   &    |-  ( ph  ->  W  e.  D )   =>    |-  ( ph  ->  S 
 ~~  T )
 
Theoremsniffsupp 8315* A function mapping all but one arguments to zero is finitely supported. (Contributed by AV, 8-Jul-2019.)
 |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  .0. 
 e.  W )   &    |-  F  =  ( x  e.  I  |->  if ( x  =  X ,  A ,  .0.  ) )   =>    |-  ( ph  ->  F finSupp  .0.  )
 
2.4.29  Finite intersections
 
Syntaxcfi 8316 Extend class notation with the function whose value is the class of all the finite intersections of the elements of a given set.
 class  fi
 
Definitiondf-fi 8317* Function whose value is the class of all the finite intersections of the elements of  x. (Contributed by FL, 27-Apr-2008.)
 |- 
 fi  =  ( x  e.  _V  |->  { z  |  E. y  e.  ( ~P x  i^i  Fin )
 z  =  |^| y } )
 
Theoremfival 8318* The set of all the finite intersections of the elements of  A. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  ( fi `  A )  =  { y  |  E. x  e.  ( ~P A  i^i  Fin )
 y  =  |^| x } )
 
Theoremelfi 8319* Specific properties of an element of 
( fi `  B
). (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  ( ~P B  i^i  Fin ) A  =  |^| x ) )
 
Theoremelfi2 8320* The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  ( B  e.  V  ->  ( A  e.  ( fi `  B )  <->  E. x  e.  (
 ( ~P B  i^i  Fin )  \  { (/) } ) A  =  |^| x ) )
 
Theoremelfir 8321 Sufficient condition for an element of  ( fi `  B ). (Contributed by Mario Carneiro, 24-Nov-2013.)
 |-  ( ( B  e.  V  /\  ( A  C_  B  /\  A  =/=  (/)  /\  A  e.  Fin ) )  ->  |^| A  e.  ( fi
 `  B ) )
 
Theoremintrnfi 8322 Sufficient condition for the intersection of the range of a function to be in the set of finite intersections. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  ( ( B  e.  V  /\  ( F : A
 --> B  /\  A  =/=  (/)  /\  A  e.  Fin )
 )  ->  |^| ran  F  e.  ( fi `  B ) )
 
Theoremiinfi 8323* An indexed intersection of elements of  C is an element of the finite intersections of  C. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  ( ( C  e.  V  /\  ( A. x  e.  A  B  e.  C  /\  A  =/=  (/)  /\  A  e.  Fin ) )  ->  |^|_
 x  e.  A  B  e.  ( fi `  C ) )
 
Theoreminelfi 8324 The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.)
 |-  ( ( X  e.  V  /\  A  e.  X  /\  B  e.  X ) 
 ->  ( A  i^i  B )  e.  ( fi `  X ) )
 
Theoremssfii 8325 Any element of a set  A is the intersection of a finite subset of  A. (Contributed by FL, 27-Apr-2008.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( A  e.  V  ->  A  C_  ( fi `  A ) )
 
Theoremfi0 8326 The set of finite intersections of the empty set. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  ( fi `  (/) )  =  (/)
 
Theoremfieq0 8327 If  A is not empty, the class of all the finite intersections of  A is not empty either. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  ( A  =  (/)  <->  ( fi `  A )  =  (/) ) )
 
Theoremfiin 8328 The elements of  ( fi `  C ) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
 |-  ( ( A  e.  ( fi `  C ) 
 /\  B  e.  ( fi `  C ) ) 
 ->  ( A  i^i  B )  e.  ( fi `  C ) )
 
Theoremdffi2 8329* The set of finite intersections is the smallest set that contains  A and is closed under pairwise intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  ( fi `  A )  =  |^| { z  |  ( A  C_  z  /\  A. x  e.  z  A. y  e.  z  ( x  i^i  y )  e.  z ) }
 )
 
Theoremfiss 8330 Subset relationship for function 
fi. (Contributed by Jeff Hankins, 7-Oct-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( ( B  e.  V  /\  A  C_  B )  ->  ( fi `  A )  C_  ( fi
 `  B ) )
 
Theoreminficl 8331* A set which is closed under pairwise intersection is closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  ( A. x  e.  A  A. y  e.  A  ( x  i^i  y )  e.  A  <->  ( fi `  A )  =  A ) )
 
Theoremfipwuni 8332 The set of finite intersections of a set is contained in the powerset of the union of the elements of 
A. (Contributed by Mario Carneiro, 24-Nov-2013.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
 |-  ( fi `  A )  C_  ~P U. A
 
Theoremfisn 8333 A singleton is closed under finite intersections. (Contributed by Mario Carneiro, 3-Sep-2015.)
 |-  ( fi `  { A } )  =  { A }
 
Theoremfiuni 8334 The union of the finite intersections of a set is simply the union of the set itself. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
 |-  ( A  e.  V  ->  U. A  =  U. ( fi `  A ) )
 
Theoremfipwss 8335 If a set is a family of subsets of some base set, then so is its finite intersection. (Contributed by Stefan O'Rear, 2-Aug-2015.)
 |-  ( A  C_  ~P X  ->  ( fi `  A )  C_  ~P X )
 
Theoremelfiun 8336* A finite intersection of elements taken from a union of collections. (Contributed by Jeff Hankins, 15-Nov-2009.) (Proof shortened by Mario Carneiro, 26-Nov-2013.)
 |-  ( ( B  e.  D  /\  C  e.  K )  ->  ( A  e.  ( fi `  ( B  u.  C ) )  <-> 
 ( A  e.  ( fi `  B )  \/  A  e.  ( fi
 `  C )  \/ 
 E. x  e.  ( fi `  B ) E. y  e.  ( fi `  C ) A  =  ( x  i^i  y ) ) ) )
 
Theoremdffi3 8337* The set of finite intersections can be "constructed" inductively by iterating binary intersection  om-many times. (Contributed by Mario Carneiro, 21-Mar-2015.)
 |-  R  =  ( u  e.  _V  |->  ran  (
 y  e.  u ,  z  e.  u  |->  ( y  i^i  z ) ) )   =>    |-  ( A  e.  V  ->  ( fi `  A )  =  U. ( rec ( R ,  A ) " om ) )
 
Theoremfifo 8338* Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
 |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )   =>    |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto->
 ( fi `  A ) )
 
2.4.30  Hall's marriage theorem
 
Theoremmarypha1lem 8339* Core induction for Philip Hall's marriage theorem. (Contributed by Stefan O'Rear, 19-Feb-2015.)
 |-  ( A  e.  Fin  ->  ( b  e.  Fin  ->  A. c  e.  ~P  ( A  X.  b
 ) ( A. d  e.  ~P  A d  ~<_  ( c " d ) 
 ->  E. e  e.  ~P  c e : A -1-1-> _V ) ) )
 
Theoremmarypha1 8340* (Philip) Hall's marriage theorem, sufficiency: a finite relation contains an injection if there is no subset of its domain which would be forced to violate the pigeonhole principle. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  C  C_  ( A  X.  B ) )   &    |-  ( ( ph  /\  d  C_  A )  ->  d  ~<_  ( C " d ) )   =>    |-  ( ph  ->  E. f  e.  ~P  C f : A -1-1-> B )
 
Theoremmarypha2lem1 8341* Lemma for marypha2 8345. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  T  =  U_ x  e.  A  ( { x }  X.  ( F `  x ) )   =>    |-  T  C_  ( A  X.  U. ran  F )
 
Theoremmarypha2lem2 8342* Lemma for marypha2 8345. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  T  =  U_ x  e.  A  ( { x }  X.  ( F `  x ) )   =>    |-  T  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }
 
Theoremmarypha2lem3 8343* Lemma for marypha2 8345. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  T  =  U_ x  e.  A  ( { x }  X.  ( F `  x ) )   =>    |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( G  C_  T  <->  A. x  e.  A  ( G `  x )  e.  ( F `  x ) ) )
 
Theoremmarypha2lem4 8344* Lemma for marypha2 8345. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  T  =  U_ x  e.  A  ( { x }  X.  ( F `  x ) )   =>    |-  ( ( F  Fn  A  /\  X  C_  A )  ->  ( T " X )  = 
 U. ( F " X ) )
 
Theoremmarypha2 8345* Version of marypha1 8340 using a functional family of sets instead of a relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  F : A --> Fin )   &    |-  (
 ( ph  /\  d  C_  A )  ->  d  ~<_  U. ( F " d ) )   =>    |-  ( ph  ->  E. g
 ( g : A -1-1-> _V 
 /\  A. x  e.  A  ( g `  x )  e.  ( F `  x ) ) )
 
2.4.31  Supremum and infimum
 
Syntaxcsup 8346 Extend class notation to include supremum of class  A. Here  R is ordinarily a relation that strictly orders class  B. For example,  R could be 'less than' and  B could be the set of real numbers.
 class  sup ( A ,  B ,  R )
 
Syntaxcinf 8347 Extend class notation to include infimum of class  A. Here  R is ordinarily a relation that strictly orders class  B. For example,  R could be 'less than' and  B could be the set of real numbers.
 class inf ( A ,  B ,  R )
 
Definitiondf-sup 8348* Define the supremum of class  A. It is meaningful when 
R is a relation that strictly orders  B and when the supremum exists. For example,  R could be 'less than',  B could be the set of real numbers, and  A could be the set of all positive reals whose square is less than 2; in this case the supremum is defined as the square root of 2 per sqrtval 13977. See dfsup2 8350 for alternate definition not requiring dummy variables. (Contributed by NM, 22-May-1999.)
 |- 
 sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
 y R x  ->  E. z  e.  A  y R z ) ) }
 
Definitiondf-inf 8349 Define the infimum of class  A. It is meaningful when 
R is a relation that strictly orders 
B and when the infimum exists. For example,  R could be 'less than',  B could be the set of real numbers, and  A could be the set of all positive reals; in this case the infimum is 0. The infimum is defined as the supremum using the converse ordering relation. In the given example, 0 is the supremum of all reals (greatest real number) for which all positive reals are greater. (Contributed by AV, 2-Sep-2020.)
 |- inf
 ( A ,  B ,  R )  =  sup ( A ,  B ,  `' R )
 
Theoremdfsup2 8350 Quantifier free definition of supremum. (Contributed by Scott Fenton, 19-Feb-2013.)
 |- 
 sup ( B ,  A ,  R )  =  U. ( A  \  ( ( `' R " B )  u.  ( R " ( A  \  ( `' R " B ) ) ) ) )
 
Theoremsupeq1 8351 Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
 |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
 )
 
Theoremsupeq1d 8352 Equality deduction for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
 
Theoremsupeq1i 8353 Equality inference for supremum. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  B  =  C   =>    |-  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R )
 
Theoremsupeq2 8354 Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( B  =  C  ->  sup ( A ,  B ,  R )  =  sup ( A ,  C ,  R )
 )
 
Theoremsupeq3 8355 Equality theorem for supremum. (Contributed by Scott Fenton, 13-Jun-2018.)
 |-  ( R  =  S  ->  sup ( A ,  B ,  R )  =  sup ( A ,  B ,  S )
 )
 
Theoremsupeq123d 8356 Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  ->  sup ( A ,  B ,  C )  =  sup ( D ,  E ,  F ) )
 
Theoremnfsup 8357 Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x R   =>    |-  F/_ x sup ( A ,  B ,  R )
 
Theoremsupmo 8358* Any class  B has at most one supremum in  A (where  R is interpreted as 'less than'). (Contributed by NM, 5-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  ->  E* x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
 
Theoremsupexd 8359 A supremum is a set. (Contributed by NM, 22-May-1999.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  e.  _V )
 
Theoremsupeu 8360* A supremum is unique. Similar to Theorem I.26 of [Apostol] p. 24 (but for suprema in general). (Contributed by NM, 12-Oct-2004.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  E! x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
 
Theoremsupval2 8361* Alternate expression for the supremum. (Contributed by Mario Carneiro, 24-Dec-2016.) (Revised by Thierry Arnoux, 24-Sep-2017.)
 |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
 
Theoremeqsup 8362* Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
 |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  ->  (
 ( C  e.  A  /\  A. y  e.  B  -.  C R y  /\  A. y  e.  A  ( y R C  ->  E. z  e.  B  y R z ) ) 
 ->  sup ( B ,  A ,  R )  =  C ) )
 
Theoremeqsupd 8363* Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  y  e.  B )  ->  -.  C R y )   &    |-  (
 ( ph  /\  ( y  e.  A  /\  y R C ) )  ->  E. z  e.  B  y R z )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
 
Theoremsupcl 8364* A supremum belongs to its base class (closure law). See also supub 8365 and suplub 8366. (Contributed by NM, 12-Oct-2004.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  e.  A )
 
Theoremsupub 8365* A supremum is an upper bound. See also supcl 8364 and suplub 8366.

This proof demonstrates how to expand an iota-based definition (df-iota 5851) using riotacl2 6624.

(Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)

 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  ( C  e.  B  ->  -. 
 sup ( B ,  A ,  R ) R C ) )
 
Theoremsuplub 8366* A supremum is the least upper bound. See also supcl 8364 and supub 8365. (Contributed by NM, 13-Oct-2004.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  (
 ( C  e.  A  /\  C R sup ( B ,  A ,  R ) )  ->  E. z  e.  B  C R z ) )
 
Theoremsuplub2 8367* Bidirectional form of suplub 8366. (Contributed by Mario Carneiro, 6-Sep-2014.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   &    |-  ( ph  ->  B 
 C_  A )   =>    |-  ( ( ph  /\  C  e.  A ) 
 ->  ( C R sup ( B ,  A ,  R )  <->  E. z  e.  B  C R z ) )
 
Theoremsupnub 8368* An upper bound is not less than the supremum. (Contributed by NM, 13-Oct-2004.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )   =>    |-  ( ph  ->  (
 ( C  e.  A  /\  A. z  e.  B  -.  C R z ) 
 ->  -.  C R sup ( B ,  A ,  R ) ) )
 
Theoremsupex 8369 A supremum is a set. (Contributed by NM, 22-May-1999.)
 |-  R  Or  A   =>    |-  sup ( B ,  A ,  R )  e.  _V
 
Theoremsup00 8370 The supremum under an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.)
 |- 
 sup ( B ,  (/)
 ,  R )  =  (/)
 
Theoremsup0riota 8371* The supremum of an empty set is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.)
 |-  ( R  Or  A  ->  sup ( (/) ,  A ,  R )  =  (
 iota_ x  e.  A  A. y  e.  A  -.  y R x ) )
 
Theoremsup0 8372* The supremum of an empty set under a base set which has a unique smallest element is the smallest element of the base set. (Contributed by AV, 4-Sep-2020.)
 |-  ( ( R  Or  A  /\  ( X  e.  A  /\  A. y  e.  A  -.  y R X )  /\  E! x  e.  A  A. y  e.  A  -.  y R x )  ->  sup ( (/)
 ,  A ,  R )  =  X )
 
Theoremsupmax 8373* The greatest element of a set is its supremum. Note that the converse is not true; the supremum might not be an element of the set considered. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof shortened by OpenAI, 30-Mar-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ( ph  /\  y  e.  B )  ->  -.  C R y )   =>    |-  ( ph  ->  sup ( B ,  A ,  R )  =  C )
 
Theoremfisup2g 8374* A finite set satisfies the conditions to have a supremum. (Contributed by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
 
Theoremfisupcl 8375 A nonempty finite set contains its supremum. (Contributed by Jeff Madsen, 9-May-2011.)
 |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B )
 
Theoremsupgtoreq 8376 The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  B 
 C_  A )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ph  ->  S  =  sup ( B ,  A ,  R ) )   =>    |-  ( ph  ->  ( C R S  \/  C  =  S ) )
 
Theoremsuppr 8377 The supremum of a pair. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( R  Or  A  /\  B  e.  A  /\  C  e.  A ) 
 ->  sup ( { B ,  C } ,  A ,  R )  =  if ( C R B ,  B ,  C )
 )
 
Theoremsupsn 8378 The supremum of a singleton. (Contributed by NM, 2-Oct-2007.)
 |-  ( ( R  Or  A  /\  B  e.  A )  ->  sup ( { B } ,  A ,  R )  =  B )
 
Theoremsupisolem 8379* Lemma for supiso 8381. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   =>    |-  ( ( ph  /\  D  e.  A ) 
 ->  ( ( A. y  e.  C  -.  D R y  /\  A. y  e.  A  ( y R D  ->  E. z  e.  C  y R z ) )  <->  ( A. w  e.  ( F " C )  -.  ( F `  D ) S w 
 /\  A. w  e.  B  ( w S ( F `
  D )  ->  E. v  e.  ( F " C ) w S v ) ) ) )
 
Theoremsupisoex 8380* Lemma for supiso 8381. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )   =>    |-  ( ph  ->  E. u  e.  B  ( A. w  e.  ( F " C )  -.  u S w 
 /\  A. w  e.  B  ( w S u  ->  E. v  e.  ( F " C ) w S v ) ) )
 
Theoremsupiso 8381* Image of a supremum under an isomorphism. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  ( ph  ->  F  Isom  R ,  S  ( A ,  B ) )   &    |-  ( ph  ->  C 
 C_  A )   &    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) )   &    |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  ->  sup ( ( F " C ) ,  B ,  S )  =  ( F `  sup ( C ,  A ,  R ) ) )
 
Theoreminfeq1 8382 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( B  =  C  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
 
Theoreminfeq1d 8383 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  B  =  C )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  = inf ( C ,  A ,  R ) )
 
Theoreminfeq1i 8384 Equality inference for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  B  =  C   =>    |- inf ( B ,  A ,  R )  = inf ( C ,  A ,  R )
 
Theoreminfeq2 8385 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( B  =  C  -> inf ( A ,  B ,  R )  = inf ( A ,  C ,  R ) )
 
Theoreminfeq3 8386 Equality theorem for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( R  =  S  -> inf ( A ,  B ,  R )  = inf ( A ,  B ,  S ) )
 
Theoreminfeq123d 8387 Equality deduction for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  A  =  D )   &    |-  ( ph  ->  B  =  E )   &    |-  ( ph  ->  C  =  F )   =>    |-  ( ph  -> inf ( A ,  B ,  C )  = inf ( D ,  E ,  F ) )
 
Theoremnfinf 8388 Hypothesis builder for infimum. (Contributed by AV, 2-Sep-2020.)
 |-  F/_ x A   &    |-  F/_ x B   &    |-  F/_ x R   =>    |-  F/_ xinf ( A ,  B ,  R )
 
Theoreminfexd 8389 An infimum is a set. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  e.  _V )
 
Theoremeqinf 8390* Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  ->  (
 ( C  e.  A  /\  A. y  e.  B  -.  y R C  /\  A. y  e.  A  ( C R y  ->  E. z  e.  B  z R y ) ) 
 -> inf ( B ,  A ,  R )  =  C ) )
 
Theoremeqinfd 8391* Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  C  e.  A )   &    |-  (
 ( ph  /\  y  e.  B )  ->  -.  y R C )   &    |-  ( ( ph  /\  ( y  e.  A  /\  C R y ) )  ->  E. z  e.  B  z R y )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
 
Theoreminfval 8392* Alternate expression for the infimum. (Contributed by AV, 2-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  =  ( iota_ x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) ) )
 
Theoreminfcllem 8393* Lemma for infcl 8394, inflb 8395, infglb 8396, etc. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
 
Theoreminfcl 8394* An infimum belongs to its base class (closure law). See also inflb 8395 and infglb 8396. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  e.  A )
 
Theoreminflb 8395* An infimum is a lower bound. See also infcl 8394 and infglb 8396. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  ( C  e.  B  ->  -.  C Rinf ( B ,  A ,  R ) ) )
 
Theoreminfglb 8396* An infimum is the greatest lower bound. See also infcl 8394 and inflb 8395. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  (
 ( C  e.  A  /\ inf ( B ,  A ,  R ) R C )  ->  E. z  e.  B  z R C ) )
 
Theoreminfglbb 8397* Bidirectional form of infglb 8396. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   &    |-  ( ph  ->  B 
 C_  A )   =>    |-  ( ( ph  /\  C  e.  A ) 
 ->  (inf ( B ,  A ,  R ) R C  <->  E. z  e.  B  z R C ) )
 
Theoreminfnlb 8398* A lower bound is not greater than the infimum. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  E. x  e.  A  (
 A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )   =>    |-  ( ph  ->  (
 ( C  e.  A  /\  A. z  e.  B  -.  z R C ) 
 ->  -. inf ( B ,  A ,  R ) R C ) )
 
Theoreminfex 8399 An infimum is a set. (Contributed by AV, 3-Sep-2020.)
 |-  R  Or  A   =>    |- inf ( B ,  A ,  R )  e.  _V
 
Theoreminfmin 8400* The smallest element of a set is its infimum. Note that the converse is not true; the infimum might not be an element of the set considered. (Contributed by AV, 3-Sep-2020.)
 |-  ( ph  ->  R  Or  A )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  C  e.  B )   &    |-  ( ( ph  /\  y  e.  B )  ->  -.  y R C )   =>    |-  ( ph  -> inf ( B ,  A ,  R )  =  C )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >