Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  intabssd Structured version   Visualization version   Unicode version

Theorem intabssd 37916
Description: When for each element  y there is a subset  A which may substituted for  x such that  y satisfying  ch implies  x satisfies  ps then the intersection of all  x that satisfy  ps is a subclass the intersection of all  y that satisfy  ch. (Contributed by RP, 17-Oct-2020.)
Hypotheses
Ref Expression
intabssd.ex  |-  ( ph  ->  A  e.  V )
intabssd.sub  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
intabssd.ss  |-  ( ph  ->  A  C_  y )
Assertion
Ref Expression
intabssd  |-  ( ph  ->  |^| { x  |  ps }  C_  |^| { y  |  ch } )
Distinct variable groups:    ch, x    ps, y    x, y, ph    x, A
Allowed substitution hints:    ps( x)    ch( y)    A( y)    V( x, y)

Proof of Theorem intabssd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 intabssd.ex . . . . 5  |-  ( ph  ->  A  e.  V )
2 intabssd.sub . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  ( ch  ->  ps ) )
3 eleq2 2690 . . . . . . . 8  |-  ( x  =  A  ->  (
z  e.  x  <->  z  e.  A ) )
43biimpd 219 . . . . . . 7  |-  ( x  =  A  ->  (
z  e.  x  -> 
z  e.  A ) )
5 intabssd.ss . . . . . . . 8  |-  ( ph  ->  A  C_  y )
65sseld 3602 . . . . . . 7  |-  ( ph  ->  ( z  e.  A  ->  z  e.  y ) )
74, 6sylan9r 690 . . . . . 6  |-  ( (
ph  /\  x  =  A )  ->  (
z  e.  x  -> 
z  e.  y ) )
82, 7imim12d 81 . . . . 5  |-  ( (
ph  /\  x  =  A )  ->  (
( ps  ->  z  e.  x )  ->  ( ch  ->  z  e.  y ) ) )
91, 8spcimdv 3290 . . . 4  |-  ( ph  ->  ( A. x ( ps  ->  z  e.  x )  ->  ( ch  ->  z  e.  y ) ) )
109alrimdv 1857 . . 3  |-  ( ph  ->  ( A. x ( ps  ->  z  e.  x )  ->  A. y
( ch  ->  z  e.  y ) ) )
11 vex 3203 . . . 4  |-  z  e. 
_V
1211elintab 4487 . . 3  |-  ( z  e.  |^| { x  |  ps }  <->  A. x
( ps  ->  z  e.  x ) )
1311elintab 4487 . . 3  |-  ( z  e.  |^| { y  |  ch }  <->  A. y
( ch  ->  z  e.  y ) )
1410, 12, 133imtr4g 285 . 2  |-  ( ph  ->  ( z  e.  |^| { x  |  ps }  ->  z  e.  |^| { y  |  ch } ) )
1514ssrdv 3609 1  |-  ( ph  ->  |^| { x  |  ps }  C_  |^| { y  |  ch } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608    C_ wss 3574   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-int 4476
This theorem is referenced by:  clcnvlem  37930
  Copyright terms: Public domain W3C validator