Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clcnvlem Structured version   Visualization version   Unicode version

Theorem clcnvlem 37930
Description: When  A, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.)
Hypotheses
Ref Expression
clcnvlem.sub1  |-  ( (
ph  /\  x  =  ( `' y  u.  ( X  \  `' `' X
) ) )  -> 
( ch  ->  ps ) )
clcnvlem.sub2  |-  ( (
ph  /\  y  =  `' x )  ->  ( ps  ->  ch ) )
clcnvlem.sub3  |-  ( x  =  A  ->  ( ps 
<->  th ) )
clcnvlem.ssub  |-  ( ph  ->  X  C_  A )
clcnvlem.ubex  |-  ( ph  ->  A  e.  _V )
clcnvlem.clex  |-  ( ph  ->  th )
Assertion
Ref Expression
clcnvlem  |-  ( ph  ->  `' |^| { x  |  ( X  C_  x  /\  ps ) }  =  |^| { y  |  ( `' X  C_  y  /\  ch ) } )
Distinct variable groups:    x, A    x, y, X    ph, x, y    ps, y    ch, x    th, x
Allowed substitution hints:    ps( x)    ch( y)    th( y)    A( y)

Proof of Theorem clcnvlem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 clcnvlem.ubex . . . 4  |-  ( ph  ->  A  e.  _V )
2 clcnvlem.ssub . . . . 5  |-  ( ph  ->  X  C_  A )
3 clcnvlem.clex . . . . 5  |-  ( ph  ->  th )
42, 3jca 554 . . . 4  |-  ( ph  ->  ( X  C_  A  /\  th ) )
5 clcnvlem.sub3 . . . . 5  |-  ( x  =  A  ->  ( ps 
<->  th ) )
65cleq2lem 37914 . . . 4  |-  ( x  =  A  ->  (
( X  C_  x  /\  ps )  <->  ( X  C_  A  /\  th )
) )
71, 4, 6elabd 3352 . . 3  |-  ( ph  ->  E. x ( X 
C_  x  /\  ps ) )
87cnvintabd 37909 . 2  |-  ( ph  ->  `' |^| { x  |  ( X  C_  x  /\  ps ) }  =  |^| { z  e.  ~P ( _V  X.  _V )  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) } )
9 df-rab 2921 . . . . 5  |-  { z  e.  ~P ( _V 
X.  _V )  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }  =  { z  |  ( z  e.  ~P ( _V  X.  _V )  /\  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) }
10 exsimpl 1795 . . . . . . . . . . 11  |-  ( E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  ->  E. x  z  =  `' x
)
11 relcnv 5503 . . . . . . . . . . . . 13  |-  Rel  `' x
12 releq 5201 . . . . . . . . . . . . 13  |-  ( z  =  `' x  -> 
( Rel  z  <->  Rel  `' x
) )
1311, 12mpbiri 248 . . . . . . . . . . . 12  |-  ( z  =  `' x  ->  Rel  z )
1413exlimiv 1858 . . . . . . . . . . 11  |-  ( E. x  z  =  `' x  ->  Rel  z )
1510, 14syl 17 . . . . . . . . . 10  |-  ( E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  ->  Rel  z )
16 df-rel 5121 . . . . . . . . . 10  |-  ( Rel  z  <->  z  C_  ( _V  X.  _V ) )
1715, 16sylib 208 . . . . . . . . 9  |-  ( E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  ->  z  C_  ( _V  X.  _V ) )
18 selpw 4165 . . . . . . . . . 10  |-  ( z  e.  ~P ( _V 
X.  _V )  <->  z  C_  ( _V  X.  _V )
)
1918bicomi 214 . . . . . . . . 9  |-  ( z 
C_  ( _V  X.  _V )  <->  z  e.  ~P ( _V  X.  _V )
)
2017, 19sylib 208 . . . . . . . 8  |-  ( E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  ->  z  e.  ~P ( _V  X.  _V ) )
2120pm4.71ri 665 . . . . . . 7  |-  ( E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  <->  ( z  e.  ~P ( _V  X.  _V )  /\  E. x
( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) )
2221bicomi 214 . . . . . 6  |-  ( ( z  e.  ~P ( _V  X.  _V )  /\  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) )  <->  E. x
( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) )
2322abbii 2739 . . . . 5  |-  { z  |  ( z  e. 
~P ( _V  X.  _V )  /\  E. x
( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) }  =  {
z  |  E. x
( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }
249, 23eqtri 2644 . . . 4  |-  { z  e.  ~P ( _V 
X.  _V )  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }  =  { z  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }
2524inteqi 4479 . . 3  |-  |^| { z  e.  ~P ( _V 
X.  _V )  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }  =  |^| { z  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }
2625a1i 11 . 2  |-  ( ph  ->  |^| { z  e. 
~P ( _V  X.  _V )  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }  =  |^| { z  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) } )
27 vex 3203 . . . . . . 7  |-  y  e. 
_V
2827cnvex 7113 . . . . . 6  |-  `' y  e.  _V
2928cnvex 7113 . . . . 5  |-  `' `' y  e.  _V
3029a1i 11 . . . 4  |-  ( ph  ->  `' `' y  e.  _V )
311, 2ssexd 4805 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  _V )
32 difexg 4808 . . . . . . . . . . 11  |-  ( X  e.  _V  ->  ( X  \  `' `' X
)  e.  _V )
3331, 32syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( X  \  `' `' X )  e.  _V )
34 unexg 6959 . . . . . . . . . 10  |-  ( ( `' y  e.  _V  /\  ( X  \  `' `' X )  e.  _V )  ->  ( `' y  u.  ( X  \  `' `' X ) )  e. 
_V )
3528, 33, 34sylancr 695 . . . . . . . . 9  |-  ( ph  ->  ( `' y  u.  ( X  \  `' `' X ) )  e. 
_V )
36 inundif 4046 . . . . . . . . . . . . . 14  |-  ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  X
37 cnvun 5538 . . . . . . . . . . . . . . . . . . . . 21  |-  `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  ( `' ( X  i^i  `' `' X )  u.  `' ( X  \  `' `' X ) )
3837sseq1i 3629 . . . . . . . . . . . . . . . . . . . 20  |-  ( `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  y  <->  ( `' ( X  i^i  `' `' X )  u.  `' ( X  \  `' `' X ) )  C_  y )
3938biimpi 206 . . . . . . . . . . . . . . . . . . 19  |-  ( `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  y  ->  ( `' ( X  i^i  `' `' X
)  u.  `' ( X  \  `' `' X ) )  C_  y )
4039unssad 3790 . . . . . . . . . . . . . . . . . 18  |-  ( `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  y  ->  `' ( X  i^i  `' `' X )  C_  y
)
41 relcnv 5503 . . . . . . . . . . . . . . . . . . . . 21  |-  Rel  `' `' X
42 relin2 5237 . . . . . . . . . . . . . . . . . . . . 21  |-  ( Rel  `' `' X  ->  Rel  ( X  i^i  `' `' X
) )
4341, 42ax-mp 5 . . . . . . . . . . . . . . . . . . . 20  |-  Rel  ( X  i^i  `' `' X
)
44 dfrel2 5583 . . . . . . . . . . . . . . . . . . . 20  |-  ( Rel  ( X  i^i  `' `' X )  <->  `' `' ( X  i^i  `' `' X )  =  ( X  i^i  `' `' X ) )
4543, 44mpbi 220 . . . . . . . . . . . . . . . . . . 19  |-  `' `' ( X  i^i  `' `' X )  =  ( X  i^i  `' `' X )
46 cnvss 5294 . . . . . . . . . . . . . . . . . . 19  |-  ( `' ( X  i^i  `' `' X )  C_  y  ->  `' `' ( X  i^i  `' `' X )  C_  `' y )
4745, 46syl5eqssr 3650 . . . . . . . . . . . . . . . . . 18  |-  ( `' ( X  i^i  `' `' X )  C_  y  ->  ( X  i^i  `' `' X )  C_  `' y )
4840, 47syl 17 . . . . . . . . . . . . . . . . 17  |-  ( `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  y  ->  ( X  i^i  `' `' X )  C_  `' y )
49 ssid 3624 . . . . . . . . . . . . . . . . 17  |-  ( X 
\  `' `' X
)  C_  ( X  \  `' `' X )
50 unss12 3785 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  i^i  `' `' X )  C_  `' y  /\  ( X  \  `' `' X )  C_  ( X  \  `' `' X
) )  ->  (
( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  ( `' y  u.  ( X  \  `' `' X
) ) )
5148, 49, 50sylancl 694 . . . . . . . . . . . . . . . 16  |-  ( `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  y  ->  ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  ( `' y  u.  ( X  \  `' `' X
) ) )
5251a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  X  ->  ( `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  y  ->  ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  ( `' y  u.  ( X  \  `' `' X
) ) ) )
53 cnveq 5296 . . . . . . . . . . . . . . . 16  |-  ( ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  X  ->  `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  `' X )
5453sseq1d 3632 . . . . . . . . . . . . . . 15  |-  ( ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  X  ->  ( `' ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  y  <->  `' X  C_  y )
)
55 sseq1 3626 . . . . . . . . . . . . . . 15  |-  ( ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  X  ->  ( ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  C_  ( `' y  u.  ( X  \  `' `' X
) )  <->  X  C_  ( `' y  u.  ( X  \  `' `' X
) ) ) )
5652, 54, 553imtr3d 282 . . . . . . . . . . . . . 14  |-  ( ( ( X  i^i  `' `' X )  u.  ( X  \  `' `' X
) )  =  X  ->  ( `' X  C_  y  ->  X  C_  ( `' y  u.  ( X  \  `' `' X
) ) ) )
5736, 56ax-mp 5 . . . . . . . . . . . . 13  |-  ( `' X  C_  y  ->  X 
C_  ( `' y  u.  ( X  \  `' `' X ) ) )
58 sseq2 3627 . . . . . . . . . . . . 13  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  -> 
( X  C_  x  <->  X 
C_  ( `' y  u.  ( X  \  `' `' X ) ) ) )
5957, 58syl5ibr 236 . . . . . . . . . . . 12  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  -> 
( `' X  C_  y  ->  X  C_  x
) )
6059adantl 482 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  ( `' y  u.  ( X  \  `' `' X
) ) )  -> 
( `' X  C_  y  ->  X  C_  x
) )
61 clcnvlem.sub1 . . . . . . . . . . 11  |-  ( (
ph  /\  x  =  ( `' y  u.  ( X  \  `' `' X
) ) )  -> 
( ch  ->  ps ) )
6260, 61anim12d 586 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  ( `' y  u.  ( X  \  `' `' X
) ) )  -> 
( ( `' X  C_  y  /\  ch )  ->  ( X  C_  x  /\  ps ) ) )
63 cnveq 5296 . . . . . . . . . . . 12  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  ->  `' x  =  `' ( `' y  u.  ( X  \  `' `' X
) ) )
64 cnvun 5538 . . . . . . . . . . . . 13  |-  `' ( `' y  u.  ( X  \  `' `' X
) )  =  ( `' `' y  u.  `' ( X  \  `' `' X ) )
65 cnvnonrel 37894 . . . . . . . . . . . . . . 15  |-  `' ( X  \  `' `' X )  =  (/)
66 0ss 3972 . . . . . . . . . . . . . . 15  |-  (/)  C_  `' `' y
6765, 66eqsstri 3635 . . . . . . . . . . . . . 14  |-  `' ( X  \  `' `' X )  C_  `' `' y
68 ssequn2 3786 . . . . . . . . . . . . . 14  |-  ( `' ( X  \  `' `' X )  C_  `' `' y  <->  ( `' `' y  u.  `' ( X  \  `' `' X
) )  =  `' `' y )
6967, 68mpbi 220 . . . . . . . . . . . . 13  |-  ( `' `' y  u.  `' ( X  \  `' `' X ) )  =  `' `' y
7064, 69eqtr2i 2645 . . . . . . . . . . . 12  |-  `' `' y  =  `' ( `' y  u.  ( X  \  `' `' X
) )
7163, 70syl6reqr 2675 . . . . . . . . . . 11  |-  ( x  =  ( `' y  u.  ( X  \  `' `' X ) )  ->  `' `' y  =  `' x )
7271adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  x  =  ( `' y  u.  ( X  \  `' `' X
) ) )  ->  `' `' y  =  `' x )
7362, 72jctild 566 . . . . . . . . 9  |-  ( (
ph  /\  x  =  ( `' y  u.  ( X  \  `' `' X
) ) )  -> 
( ( `' X  C_  y  /\  ch )  ->  ( `' `' y  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) )
7435, 73spcimedv 3292 . . . . . . . 8  |-  ( ph  ->  ( ( `' X  C_  y  /\  ch )  ->  E. x ( `' `' y  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) )
7574imp 445 . . . . . . 7  |-  ( (
ph  /\  ( `' X  C_  y  /\  ch ) )  ->  E. x
( `' `' y  =  `' x  /\  ( X  C_  x  /\  ps ) ) )
7675adantlr 751 . . . . . 6  |-  ( ( ( ph  /\  z  =  `' `' y )  /\  ( `' X  C_  y  /\  ch ) )  ->  E. x
( `' `' y  =  `' x  /\  ( X  C_  x  /\  ps ) ) )
77 eqeq1 2626 . . . . . . . . 9  |-  ( z  =  `' `' y  ->  ( z  =  `' x  <->  `' `' y  =  `' x ) )
7877anbi1d 741 . . . . . . . 8  |-  ( z  =  `' `' y  ->  ( ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  <->  ( `' `' y  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) )
7978exbidv 1850 . . . . . . 7  |-  ( z  =  `' `' y  ->  ( E. x
( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  <->  E. x ( `' `' y  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) )
8079ad2antlr 763 . . . . . 6  |-  ( ( ( ph  /\  z  =  `' `' y )  /\  ( `' X  C_  y  /\  ch ) )  ->  ( E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  <->  E. x
( `' `' y  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) )
8176, 80mpbird 247 . . . . 5  |-  ( ( ( ph  /\  z  =  `' `' y )  /\  ( `' X  C_  y  /\  ch ) )  ->  E. x
( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) )
8281ex 450 . . . 4  |-  ( (
ph  /\  z  =  `' `' y )  -> 
( ( `' X  C_  y  /\  ch )  ->  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) ) )
83 cnvcnvss 5589 . . . . 5  |-  `' `' y  C_  y
8483a1i 11 . . . 4  |-  ( ph  ->  `' `' y  C_  y )
8530, 82, 84intabssd 37916 . . 3  |-  ( ph  ->  |^| { z  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }  C_  |^|
{ y  |  ( `' X  C_  y  /\  ch ) } )
86 vex 3203 . . . . 5  |-  z  e. 
_V
8786a1i 11 . . . 4  |-  ( ph  ->  z  e.  _V )
88 eqtr 2641 . . . . . . . 8  |-  ( ( y  =  z  /\  z  =  `' x
)  ->  y  =  `' x )
89 cnvss 5294 . . . . . . . . . . . 12  |-  ( X 
C_  x  ->  `' X  C_  `' x )
90 sseq2 3627 . . . . . . . . . . . 12  |-  ( y  =  `' x  -> 
( `' X  C_  y 
<->  `' X  C_  `' x
) )
9189, 90syl5ibr 236 . . . . . . . . . . 11  |-  ( y  =  `' x  -> 
( X  C_  x  ->  `' X  C_  y ) )
9291adantl 482 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  `' x )  ->  ( X  C_  x  ->  `' X  C_  y ) )
93 clcnvlem.sub2 . . . . . . . . . 10  |-  ( (
ph  /\  y  =  `' x )  ->  ( ps  ->  ch ) )
9492, 93anim12d 586 . . . . . . . . 9  |-  ( (
ph  /\  y  =  `' x )  ->  (
( X  C_  x  /\  ps )  ->  ( `' X  C_  y  /\  ch ) ) )
9594ex 450 . . . . . . . 8  |-  ( ph  ->  ( y  =  `' x  ->  ( ( X 
C_  x  /\  ps )  ->  ( `' X  C_  y  /\  ch )
) ) )
9688, 95syl5 34 . . . . . . 7  |-  ( ph  ->  ( ( y  =  z  /\  z  =  `' x )  ->  (
( X  C_  x  /\  ps )  ->  ( `' X  C_  y  /\  ch ) ) ) )
9796impl 650 . . . . . 6  |-  ( ( ( ph  /\  y  =  z )  /\  z  =  `' x
)  ->  ( ( X  C_  x  /\  ps )  ->  ( `' X  C_  y  /\  ch )
) )
9897expimpd 629 . . . . 5  |-  ( (
ph  /\  y  =  z )  ->  (
( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  ->  ( `' X  C_  y  /\  ch )
) )
9998exlimdv 1861 . . . 4  |-  ( (
ph  /\  y  =  z )  ->  ( E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) )  ->  ( `' X  C_  y  /\  ch ) ) )
100 ssid 3624 . . . . 5  |-  z  C_  z
101100a1i 11 . . . 4  |-  ( ph  ->  z  C_  z )
10287, 99, 101intabssd 37916 . . 3  |-  ( ph  ->  |^| { y  |  ( `' X  C_  y  /\  ch ) } 
C_  |^| { z  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) } )
10385, 102eqssd 3620 . 2  |-  ( ph  ->  |^| { z  |  E. x ( z  =  `' x  /\  ( X  C_  x  /\  ps ) ) }  =  |^| { y  |  ( `' X  C_  y  /\  ch ) } )
1048, 26, 1033eqtrd 2660 1  |-  ( ph  ->  `' |^| { x  |  ( X  C_  x  /\  ps ) }  =  |^| { y  |  ( `' X  C_  y  /\  ch ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   |^|cint 4475    X. cxp 5112   `'ccnv 5113   Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  cnvtrucl0  37931  cnvrcl0  37932  cnvtrcl0  37933
  Copyright terms: Public domain W3C validator