Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ishlat1 Structured version   Visualization version   Unicode version

Theorem ishlat1 34639
Description: The predicate "is a Hilbert lattice," which is orthomodular ( K  e.  OML), complete ( K  e.  CLat), atomic and satisfying the exchange (or covering) property ( K  e.  CvLat), satisfies the superposition principle, and has a minimum height of 4. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
ishlat.b  |-  B  =  ( Base `  K
)
ishlat.l  |-  .<_  =  ( le `  K )
ishlat.s  |-  .<  =  ( lt `  K )
ishlat.j  |-  .\/  =  ( join `  K )
ishlat.z  |-  .0.  =  ( 0. `  K )
ishlat.u  |-  .1.  =  ( 1. `  K )
ishlat.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
ishlat1  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
Distinct variable groups:    x, y,
z, A    x, B, y, z    x, K, y, z
Allowed substitution hints:    .< ( x, y,
z)    .1. ( x, y, z)    .\/ ( x, y, z)    .<_ ( x, y, z)    .0. ( x, y, z)

Proof of Theorem ishlat1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( k  =  K  ->  ( Atoms `  k )  =  ( Atoms `  K )
)
2 ishlat.a . . . . . 6  |-  A  =  ( Atoms `  K )
31, 2syl6eqr 2674 . . . . 5  |-  ( k  =  K  ->  ( Atoms `  k )  =  A )
4 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( le `  k )  =  ( le `  K
) )
5 ishlat.l . . . . . . . . . . . 12  |-  .<_  =  ( le `  K )
64, 5syl6eqr 2674 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( le `  k )  = 
.<_  )
76breqd 4664 . . . . . . . . . 10  |-  ( k  =  K  ->  (
z ( le `  k ) ( x ( join `  k
) y )  <->  z  .<_  ( x ( join `  k
) y ) ) )
8 fveq2 6191 . . . . . . . . . . . . 13  |-  ( k  =  K  ->  ( join `  k )  =  ( join `  K
) )
9 ishlat.j . . . . . . . . . . . . 13  |-  .\/  =  ( join `  K )
108, 9syl6eqr 2674 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( join `  k )  = 
.\/  )
1110oveqd 6667 . . . . . . . . . . 11  |-  ( k  =  K  ->  (
x ( join `  k
) y )  =  ( x  .\/  y
) )
1211breq2d 4665 . . . . . . . . . 10  |-  ( k  =  K  ->  (
z  .<_  ( x (
join `  k )
y )  <->  z  .<_  ( x  .\/  y ) ) )
137, 12bitrd 268 . . . . . . . . 9  |-  ( k  =  K  ->  (
z ( le `  k ) ( x ( join `  k
) y )  <->  z  .<_  ( x  .\/  y ) ) )
14133anbi3d 1405 . . . . . . . 8  |-  ( k  =  K  ->  (
( z  =/=  x  /\  z  =/=  y  /\  z ( le `  k ) ( x ( join `  k
) y ) )  <-> 
( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) )
153, 14rexeqbidv 3153 . . . . . . 7  |-  ( k  =  K  ->  ( E. z  e.  ( Atoms `  k ) ( z  =/=  x  /\  z  =/=  y  /\  z
( le `  k
) ( x (
join `  k )
y ) )  <->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) ) )
1615imbi2d 330 . . . . . 6  |-  ( k  =  K  ->  (
( x  =/=  y  ->  E. z  e.  (
Atoms `  k ) ( z  =/=  x  /\  z  =/=  y  /\  z
( le `  k
) ( x (
join `  k )
y ) ) )  <-> 
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) ) )
173, 16raleqbidv 3152 . . . . 5  |-  ( k  =  K  ->  ( A. y  e.  ( Atoms `  k ) ( x  =/=  y  ->  E. z  e.  ( Atoms `  k ) ( z  =/=  x  /\  z  =/=  y  /\  z
( le `  k
) ( x (
join `  k )
y ) ) )  <->  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) ) )
183, 17raleqbidv 3152 . . . 4  |-  ( k  =  K  ->  ( A. x  e.  ( Atoms `  k ) A. y  e.  ( Atoms `  k ) ( x  =/=  y  ->  E. z  e.  ( Atoms `  k )
( z  =/=  x  /\  z  =/=  y  /\  z ( le `  k ) ( x ( join `  k
) y ) ) )  <->  A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) ) ) )
19 fveq2 6191 . . . . . 6  |-  ( k  =  K  ->  ( Base `  k )  =  ( Base `  K
) )
20 ishlat.b . . . . . 6  |-  B  =  ( Base `  K
)
2119, 20syl6eqr 2674 . . . . 5  |-  ( k  =  K  ->  ( Base `  k )  =  B )
22 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( lt `  k )  =  ( lt `  K
) )
23 ishlat.s . . . . . . . . . . . 12  |-  .<  =  ( lt `  K )
2422, 23syl6eqr 2674 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( lt `  k )  = 
.<  )
2524breqd 4664 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( 0. `  k
) ( lt `  k ) x  <->  ( 0. `  k )  .<  x
) )
26 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( 0. `  k )  =  ( 0. `  K
) )
27 ishlat.z . . . . . . . . . . . 12  |-  .0.  =  ( 0. `  K )
2826, 27syl6eqr 2674 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( 0. `  k )  =  .0.  )
2928breq1d 4663 . . . . . . . . . 10  |-  ( k  =  K  ->  (
( 0. `  k
)  .<  x  <->  .0.  .<  x
) )
3025, 29bitrd 268 . . . . . . . . 9  |-  ( k  =  K  ->  (
( 0. `  k
) ( lt `  k ) x  <->  .0.  .<  x
) )
3124breqd 4664 . . . . . . . . 9  |-  ( k  =  K  ->  (
x ( lt `  k ) y  <->  x  .<  y ) )
3230, 31anbi12d 747 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( 0. `  k ) ( lt
`  k ) x  /\  x ( lt
`  k ) y )  <->  (  .0.  .<  x  /\  x  .<  y
) ) )
3324breqd 4664 . . . . . . . . 9  |-  ( k  =  K  ->  (
y ( lt `  k ) z  <->  y  .<  z ) )
3424breqd 4664 . . . . . . . . . 10  |-  ( k  =  K  ->  (
z ( lt `  k ) ( 1.
`  k )  <->  z  .<  ( 1. `  k ) ) )
35 fveq2 6191 . . . . . . . . . . . 12  |-  ( k  =  K  ->  ( 1. `  k )  =  ( 1. `  K
) )
36 ishlat.u . . . . . . . . . . . 12  |-  .1.  =  ( 1. `  K )
3735, 36syl6eqr 2674 . . . . . . . . . . 11  |-  ( k  =  K  ->  ( 1. `  k )  =  .1.  )
3837breq2d 4665 . . . . . . . . . 10  |-  ( k  =  K  ->  (
z  .<  ( 1. `  k )  <->  z  .<  .1.  ) )
3934, 38bitrd 268 . . . . . . . . 9  |-  ( k  =  K  ->  (
z ( lt `  k ) ( 1.
`  k )  <->  z  .<  .1.  ) )
4033, 39anbi12d 747 . . . . . . . 8  |-  ( k  =  K  ->  (
( y ( lt
`  k ) z  /\  z ( lt
`  k ) ( 1. `  k ) )  <->  ( y  .< 
z  /\  z  .<  .1.  ) ) )
4132, 40anbi12d 747 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ( 0.
`  k ) ( lt `  k ) x  /\  x ( lt `  k ) y )  /\  (
y ( lt `  k ) z  /\  z ( lt `  k ) ( 1.
`  k ) ) )  <->  ( (  .0. 
.<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )
4221, 41rexeqbidv 3153 . . . . . 6  |-  ( k  =  K  ->  ( E. z  e.  ( Base `  k ) ( ( ( 0. `  k ) ( lt
`  k ) x  /\  x ( lt
`  k ) y )  /\  ( y ( lt `  k
) z  /\  z
( lt `  k
) ( 1. `  k ) ) )  <->  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y
)  /\  ( y  .<  z  /\  z  .<  .1.  ) ) ) )
4321, 42rexeqbidv 3153 . . . . 5  |-  ( k  =  K  ->  ( E. y  e.  ( Base `  k ) E. z  e.  ( Base `  k ) ( ( ( 0. `  k
) ( lt `  k ) x  /\  x ( lt `  k ) y )  /\  ( y ( lt `  k ) z  /\  z ( lt `  k ) ( 1. `  k
) ) )  <->  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )
4421, 43rexeqbidv 3153 . . . 4  |-  ( k  =  K  ->  ( E. x  e.  ( Base `  k ) E. y  e.  ( Base `  k ) E. z  e.  ( Base `  k
) ( ( ( 0. `  k ) ( lt `  k
) x  /\  x
( lt `  k
) y )  /\  ( y ( lt
`  k ) z  /\  z ( lt
`  k ) ( 1. `  k ) ) )  <->  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )
4518, 44anbi12d 747 . . 3  |-  ( k  =  K  ->  (
( A. x  e.  ( Atoms `  k ) A. y  e.  ( Atoms `  k ) ( x  =/=  y  ->  E. z  e.  ( Atoms `  k ) ( z  =/=  x  /\  z  =/=  y  /\  z
( le `  k
) ( x (
join `  k )
y ) ) )  /\  E. x  e.  ( Base `  k
) E. y  e.  ( Base `  k
) E. z  e.  ( Base `  k
) ( ( ( 0. `  k ) ( lt `  k
) x  /\  x
( lt `  k
) y )  /\  ( y ( lt
`  k ) z  /\  z ( lt
`  k ) ( 1. `  k ) ) ) )  <->  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
46 df-hlat 34638 . . 3  |-  HL  =  { k  e.  ( ( OML  i^i  CLat )  i^i  CvLat )  |  ( A. x  e.  (
Atoms `  k ) A. y  e.  ( Atoms `  k ) ( x  =/=  y  ->  E. z  e.  ( Atoms `  k )
( z  =/=  x  /\  z  =/=  y  /\  z ( le `  k ) ( x ( join `  k
) y ) ) )  /\  E. x  e.  ( Base `  k
) E. y  e.  ( Base `  k
) E. z  e.  ( Base `  k
) ( ( ( 0. `  k ) ( lt `  k
) x  /\  x
( lt `  k
) y )  /\  ( y ( lt
`  k ) z  /\  z ( lt
`  k ) ( 1. `  k ) ) ) ) }
4745, 46elrab2 3366 . 2  |-  ( K  e.  HL  <->  ( K  e.  ( ( OML  i^i  CLat )  i^i  CvLat )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
48 elin 3796 . . . . 5  |-  ( K  e.  ( OML  i^i  CLat )  <->  ( K  e. 
OML  /\  K  e.  CLat ) )
4948anbi1i 731 . . . 4  |-  ( ( K  e.  ( OML 
i^i  CLat )  /\  K  e.  CvLat )  <->  ( ( K  e.  OML  /\  K  e.  CLat )  /\  K  e.  CvLat ) )
50 elin 3796 . . . 4  |-  ( K  e.  ( ( OML 
i^i  CLat )  i^i  CvLat )  <-> 
( K  e.  ( OML  i^i  CLat )  /\  K  e.  CvLat ) )
51 df-3an 1039 . . . 4  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  <->  ( ( K  e.  OML  /\  K  e.  CLat )  /\  K  e.  CvLat ) )
5249, 50, 513bitr4ri 293 . . 3  |-  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  <->  K  e.  ( ( OML  i^i  CLat )  i^i  CvLat ) )
5352anbi1i 731 . 2  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) )  <->  ( K  e.  ( ( OML  i^i  CLat )  i^i  CvLat )  /\  ( A. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
5447, 53bitr4i 267 1  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  CvLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (  .0.  .<  x  /\  x  .<  y )  /\  (
y  .<  z  /\  z  .<  .1.  ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   ltcplt 16941   joincjn 16944   0.cp0 17037   1.cp1 17038   CLatccla 17107   OMLcoml 34462   Atomscatm 34550   CvLatclc 34552   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-hlat 34638
This theorem is referenced by:  ishlat2  34640  ishlat3N  34641  hlomcmcv  34643
  Copyright terms: Public domain W3C validator