MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islpir Structured version   Visualization version   Unicode version

Theorem islpir 19249
Description: Principal ideal rings are where all ideals are principal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lpival.p  |-  P  =  (LPIdeal `  R )
lpiss.u  |-  U  =  (LIdeal `  R )
Assertion
Ref Expression
islpir  |-  ( R  e. LPIR 
<->  ( R  e.  Ring  /\  U  =  P ) )

Proof of Theorem islpir
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( r  =  R  ->  (LIdeal `  r )  =  (LIdeal `  R ) )
2 fveq2 6191 . . . 4  |-  ( r  =  R  ->  (LPIdeal `  r )  =  (LPIdeal `  R ) )
31, 2eqeq12d 2637 . . 3  |-  ( r  =  R  ->  (
(LIdeal `  r )  =  (LPIdeal `  r )  <->  (LIdeal `  R )  =  (LPIdeal `  R ) ) )
4 lpiss.u . . . 4  |-  U  =  (LIdeal `  R )
5 lpival.p . . . 4  |-  P  =  (LPIdeal `  R )
64, 5eqeq12i 2636 . . 3  |-  ( U  =  P  <->  (LIdeal `  R
)  =  (LPIdeal `  R
) )
73, 6syl6bbr 278 . 2  |-  ( r  =  R  ->  (
(LIdeal `  r )  =  (LPIdeal `  r )  <->  U  =  P ) )
8 df-lpir 19244 . 2  |- LPIR  =  {
r  e.  Ring  |  (LIdeal `  r )  =  (LPIdeal `  r ) }
97, 8elrab2 3366 1  |-  ( R  e. LPIR 
<->  ( R  e.  Ring  /\  U  =  P ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888   Ringcrg 18547  LIdealclidl 19170  LPIdealclpidl 19241  LPIRclpir 19242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-lpir 19244
This theorem is referenced by:  islpir2  19251  lpirring  19252  lpirlnr  37687
  Copyright terms: Public domain W3C validator