MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isprm Structured version   Visualization version   Unicode version

Theorem isprm 15387
Description: The predicate "is a prime number". A prime number is a positive integer with exactly two positive divisors. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
isprm  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
Distinct variable group:    P, n

Proof of Theorem isprm
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 breq2 4657 . . . 4  |-  ( p  =  P  ->  (
n  ||  p  <->  n  ||  P
) )
21rabbidv 3189 . . 3  |-  ( p  =  P  ->  { n  e.  NN  |  n  ||  p }  =  {
n  e.  NN  |  n  ||  P } )
32breq1d 4663 . 2  |-  ( p  =  P  ->  ( { n  e.  NN  |  n  ||  p }  ~~  2o  <->  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
4 df-prm 15386 . 2  |-  Prime  =  { p  e.  NN  |  { n  e.  NN  |  n  ||  p }  ~~  2o }
53, 4elrab2 3366 1  |-  ( P  e.  Prime  <->  ( P  e.  NN  /\  { n  e.  NN  |  n  ||  P }  ~~  2o ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   class class class wbr 4653   2oc2o 7554    ~~ cen 7952   NNcn 11020    || cdvds 14983   Primecprime 15385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-prm 15386
This theorem is referenced by:  prmnn  15388  1nprm  15392  isprm2  15395
  Copyright terms: Public domain W3C validator