Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrext Structured version   Visualization version   Unicode version

Theorem isrrext 30044
Description: Express the property " R is an extension of  RR". (Contributed by Thierry Arnoux, 2-May-2018.)
Hypotheses
Ref Expression
isrrext.b  |-  B  =  ( Base `  R
)
isrrext.v  |-  D  =  ( ( dist `  R
)  |`  ( B  X.  B ) )
isrrext.z  |-  Z  =  ( ZMod `  R
)
Assertion
Ref Expression
isrrext  |-  ( R  e. ℝExt 
<->  ( ( R  e. NrmRing  /\  R  e.  DivRing )  /\  ( Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R
)  =  (metUnif `  D
) ) ) )

Proof of Theorem isrrext
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 elin 3796 . . 3  |-  ( R  e.  (NrmRing  i^i  DivRing )  <->  ( R  e. NrmRing  /\  R  e.  DivRing ) )
21anbi1i 731 . 2  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  ( ( Z  e. NrmMod  /\  (chr `  R
)  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R )  =  (metUnif `  D )
) ) )  <->  ( ( R  e. NrmRing  /\  R  e.  DivRing )  /\  ( ( Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R
)  =  (metUnif `  D
) ) ) ) )
3 fveq2 6191 . . . . . . 7  |-  ( r  =  R  ->  ( ZMod `  r )  =  ( ZMod `  R
) )
43eleq1d 2686 . . . . . 6  |-  ( r  =  R  ->  (
( ZMod `  r
)  e. NrmMod  <->  ( ZMod `  R )  e. NrmMod )
)
5 isrrext.z . . . . . . 7  |-  Z  =  ( ZMod `  R
)
65eleq1i 2692 . . . . . 6  |-  ( Z  e. NrmMod 
<->  ( ZMod `  R
)  e. NrmMod )
74, 6syl6bbr 278 . . . . 5  |-  ( r  =  R  ->  (
( ZMod `  r
)  e. NrmMod  <->  Z  e. NrmMod ) )
8 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  (chr `  r )  =  (chr
`  R ) )
98eqeq1d 2624 . . . . 5  |-  ( r  =  R  ->  (
(chr `  r )  =  0  <->  (chr `  R
)  =  0 ) )
107, 9anbi12d 747 . . . 4  |-  ( r  =  R  ->  (
( ( ZMod `  r )  e. NrmMod  /\  (chr `  r )  =  0 )  <->  ( Z  e. NrmMod  /\  (chr `  R )  =  0 ) ) )
11 eleq1 2689 . . . . 5  |-  ( r  =  R  ->  (
r  e. CUnifSp  <->  R  e. CUnifSp ) )
12 fveq2 6191 . . . . . 6  |-  ( r  =  R  ->  (UnifSt `  r )  =  (UnifSt `  R ) )
13 fveq2 6191 . . . . . . . . 9  |-  ( r  =  R  ->  ( dist `  r )  =  ( dist `  R
) )
14 fveq2 6191 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
15 isrrext.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
1614, 15syl6eqr 2674 . . . . . . . . . 10  |-  ( r  =  R  ->  ( Base `  r )  =  B )
1716sqxpeqd 5141 . . . . . . . . 9  |-  ( r  =  R  ->  (
( Base `  r )  X.  ( Base `  r
) )  =  ( B  X.  B ) )
1813, 17reseq12d 5397 . . . . . . . 8  |-  ( r  =  R  ->  (
( dist `  r )  |`  ( ( Base `  r
)  X.  ( Base `  r ) ) )  =  ( ( dist `  R )  |`  ( B  X.  B ) ) )
19 isrrext.v . . . . . . . 8  |-  D  =  ( ( dist `  R
)  |`  ( B  X.  B ) )
2018, 19syl6eqr 2674 . . . . . . 7  |-  ( r  =  R  ->  (
( dist `  r )  |`  ( ( Base `  r
)  X.  ( Base `  r ) ) )  =  D )
2120fveq2d 6195 . . . . . 6  |-  ( r  =  R  ->  (metUnif `  ( ( dist `  r
)  |`  ( ( Base `  r )  X.  ( Base `  r ) ) ) )  =  (metUnif `  D ) )
2212, 21eqeq12d 2637 . . . . 5  |-  ( r  =  R  ->  (
(UnifSt `  r )  =  (metUnif `  ( ( dist `  r )  |`  ( ( Base `  r
)  X.  ( Base `  r ) ) ) )  <->  (UnifSt `  R )  =  (metUnif `  D )
) )
2311, 22anbi12d 747 . . . 4  |-  ( r  =  R  ->  (
( r  e. CUnifSp  /\  (UnifSt `  r )  =  (metUnif `  ( ( dist `  r
)  |`  ( ( Base `  r )  X.  ( Base `  r ) ) ) ) )  <->  ( R  e. CUnifSp  /\  (UnifSt `  R
)  =  (metUnif `  D
) ) ) )
2410, 23anbi12d 747 . . 3  |-  ( r  =  R  ->  (
( ( ( ZMod
`  r )  e. NrmMod  /\  (chr `  r )  =  0 )  /\  ( r  e. CUnifSp  /\  (UnifSt `  r )  =  (metUnif `  ( ( dist `  r
)  |`  ( ( Base `  r )  X.  ( Base `  r ) ) ) ) ) )  <-> 
( ( Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R )  =  (metUnif `  D ) ) ) ) )
25 df-rrext 30043 . . 3  |- ℝExt  =  {
r  e.  (NrmRing  i^i  DivRing )  |  ( (
( ZMod `  r
)  e. NrmMod  /\  (chr `  r )  =  0 )  /\  ( r  e. CUnifSp  /\  (UnifSt `  r
)  =  (metUnif `  (
( dist `  r )  |`  ( ( Base `  r
)  X.  ( Base `  r ) ) ) ) ) ) }
2624, 25elrab2 3366 . 2  |-  ( R  e. ℝExt 
<->  ( R  e.  (NrmRing  i^i 
DivRing )  /\  ( ( Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R
)  =  (metUnif `  D
) ) ) ) )
27 3anass 1042 . 2  |-  ( ( ( R  e. NrmRing  /\  R  e.  DivRing )  /\  ( Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R
)  =  (metUnif `  D
) ) )  <->  ( ( R  e. NrmRing  /\  R  e.  DivRing )  /\  ( ( Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R
)  =  (metUnif `  D
) ) ) ) )
282, 26, 273bitr4i 292 1  |-  ( R  e. ℝExt 
<->  ( ( R  e. NrmRing  /\  R  e.  DivRing )  /\  ( Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  ( R  e. CUnifSp  /\  (UnifSt `  R
)  =  (metUnif `  D
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    X. cxp 5112    |` cres 5116   ` cfv 5888   0cc0 9936   Basecbs 15857   distcds 15950   DivRingcdr 18747  metUnifcmetu 19737   ZModczlm 19849  chrcchr 19850  UnifStcuss 22057  CUnifSpccusp 22101  NrmRingcnrg 22384  NrmModcnlm 22385   ℝExt crrext 30038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-res 5126  df-iota 5851  df-fv 5896  df-rrext 30043
This theorem is referenced by:  rrextnrg  30045  rrextdrg  30046  rrextnlm  30047  rrextchr  30048  rrextcusp  30049  rrextust  30052  rerrext  30053  cnrrext  30054
  Copyright terms: Public domain W3C validator