MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinval2lem Structured version   Visualization version   Unicode version

Theorem joinval2lem 17008
Description: Lemma for joinval2 17009 and joineu 17010. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu into joinlem?
Hypotheses
Ref Expression
joinval2.b  |-  B  =  ( Base `  K
)
joinval2.l  |-  .<_  =  ( le `  K )
joinval2.j  |-  .\/  =  ( join `  K )
joinval2.k  |-  ( ph  ->  K  e.  V )
joinval2.x  |-  ( ph  ->  X  e.  B )
joinval2.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
joinval2lem  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( A. y  e.  { X ,  Y } y  .<_  x  /\  A. z  e.  B  ( A. y  e.  { X ,  Y }
y  .<_  z  ->  x  .<_  z ) )  <->  ( ( X  .<_  x  /\  Y  .<_  x )  /\  A. z  e.  B  (
( X  .<_  z  /\  Y  .<_  z )  ->  x  .<_  z ) ) ) )
Distinct variable groups:    x, z, B    x,  .\/ , z    x, y, K, z    y,  .<_    x, X, y, z    x, Y, y, z
Allowed substitution hints:    ph( x, y, z)    B( y)    .\/ ( y)    .<_ ( x, z)    V( x, y, z)

Proof of Theorem joinval2lem
StepHypRef Expression
1 breq1 4656 . . 3  |-  ( y  =  X  ->  (
y  .<_  x  <->  X  .<_  x ) )
2 breq1 4656 . . 3  |-  ( y  =  Y  ->  (
y  .<_  x  <->  Y  .<_  x ) )
31, 2ralprg 4234 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. y  e. 
{ X ,  Y } y  .<_  x  <->  ( X  .<_  x  /\  Y  .<_  x ) ) )
4 breq1 4656 . . . . 5  |-  ( y  =  X  ->  (
y  .<_  z  <->  X  .<_  z ) )
5 breq1 4656 . . . . 5  |-  ( y  =  Y  ->  (
y  .<_  z  <->  Y  .<_  z ) )
64, 5ralprg 4234 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. y  e. 
{ X ,  Y } y  .<_  z  <->  ( X  .<_  z  /\  Y  .<_  z ) ) )
76imbi1d 331 . . 3  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( A. y  e.  { X ,  Y } y  .<_  z  ->  x  .<_  z )  <->  ( ( X  .<_  z  /\  Y  .<_  z )  ->  x  .<_  z ) ) )
87ralbidv 2986 . 2  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( A. z  e.  B  ( A. y  e.  { X ,  Y } y  .<_  z  ->  x  .<_  z )  <->  A. z  e.  B  ( ( X  .<_  z  /\  Y  .<_  z )  ->  x  .<_  z ) ) )
93, 8anbi12d 747 1  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( ( A. y  e.  { X ,  Y } y  .<_  x  /\  A. z  e.  B  ( A. y  e.  { X ,  Y }
y  .<_  z  ->  x  .<_  z ) )  <->  ( ( X  .<_  x  /\  Y  .<_  x )  /\  A. z  e.  B  (
( X  .<_  z  /\  Y  .<_  z )  ->  x  .<_  z ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {cpr 4179   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   joincjn 16944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by:  joinval2  17009  joineu  17010
  Copyright terms: Public domain W3C validator