Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldlfcntref Structured version   Visualization version   Unicode version

Theorem ldlfcntref 29921
Description: Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.)
Hypothesis
Ref Expression
ldlfcntref.x  |-  X  = 
U. J
Assertion
Ref Expression
ldlfcntref  |-  ( ( J  e. Ldlf  /\  U  C_  J  /\  X  = 
U. U )  ->  E. v  e.  ~P  J ( v  ~<_  om 
/\  v Ref U
) )
Distinct variable groups:    v, J    v, U
Allowed substitution hint:    X( v)

Proof of Theorem ldlfcntref
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ldlfcntref.x . 2  |-  X  = 
U. J
2 df-ldlf 29920 . 2  |- Ldlf  = CovHasRef { x  |  x  ~<_  om }
3 vex 3203 . . . 4  |-  v  e. 
_V
4 breq1 4656 . . . 4  |-  ( x  =  v  ->  (
x  ~<_  om  <->  v  ~<_  om )
)
53, 4elab 3350 . . 3  |-  ( v  e.  { x  |  x  ~<_  om }  <->  v  ~<_  om )
65biimpi 206 . 2  |-  ( v  e.  { x  |  x  ~<_  om }  ->  v  ~<_  om )
71, 2, 6crefdf 29915 1  |-  ( ( J  e. Ldlf  /\  U  C_  J  /\  X  = 
U. U )  ->  E. v  e.  ~P  J ( v  ~<_  om 
/\  v Ref U
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   class class class wbr 4653   omcom 7065    ~<_ cdom 7953   Refcref 21305  Ldlfcldlf 29919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-cref 29910  df-ldlf 29920
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator