| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mob2 | Structured version Visualization version Unicode version | ||
| Description: Consequence of "at most one." (Contributed by NM, 2-Jan-2015.) |
| Ref | Expression |
|---|---|
| moi2.1 |
|
| Ref | Expression |
|---|---|
| mob2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1063 |
. . 3
| |
| 2 | moi2.1 |
. . 3
| |
| 3 | 1, 2 | syl5ibcom 235 |
. 2
|
| 4 | nfv 1843 |
. . . . . . . . 9
| |
| 5 | 4, 2 | sbhypf 3253 |
. . . . . . . 8
|
| 6 | 5 | anbi2d 740 |
. . . . . . 7
|
| 7 | eqeq2 2633 |
. . . . . . 7
| |
| 8 | 6, 7 | imbi12d 334 |
. . . . . 6
|
| 9 | 8 | spcgv 3293 |
. . . . 5
|
| 10 | nfs1v 2437 |
. . . . . . 7
| |
| 11 | sbequ12 2111 |
. . . . . . 7
| |
| 12 | 10, 11 | mo4f 2516 |
. . . . . 6
|
| 13 | sp 2053 |
. . . . . 6
| |
| 14 | 12, 13 | sylbi 207 |
. . . . 5
|
| 15 | 9, 14 | impel 485 |
. . . 4
|
| 16 | 15 | expd 452 |
. . 3
|
| 17 | 16 | 3impia 1261 |
. 2
|
| 18 | 3, 17 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 |
| This theorem is referenced by: moi2 3387 mob 3388 rmob2 3531 |
| Copyright terms: Public domain | W3C validator |