| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mo4f | Structured version Visualization version Unicode version | ||
| Description: "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.) |
| Ref | Expression |
|---|---|
| mo4f.1 |
|
| mo4f.2 |
|
| Ref | Expression |
|---|---|
| mo4f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1843 |
. . 3
| |
| 2 | 1 | mo3 2507 |
. 2
|
| 3 | mo4f.1 |
. . . . . 6
| |
| 4 | mo4f.2 |
. . . . . 6
| |
| 5 | 3, 4 | sbie 2408 |
. . . . 5
|
| 6 | 5 | anbi2i 730 |
. . . 4
|
| 7 | 6 | imbi1i 339 |
. . 3
|
| 8 | 7 | 2albii 1748 |
. 2
|
| 9 | 2, 8 | bitri 264 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: mo4 2517 bm1.1 2607 mob2 3386 moop2 4966 |
| Copyright terms: Public domain | W3C validator |