Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpnanrd Structured version   Visualization version   Unicode version

Theorem mpnanrd 33178
Description: Eliminate the right side of a negated conjunction in an implication. (Contributed by ML, 17-Oct-2020.)
Hypotheses
Ref Expression
mpnanrd.1  |-  ( ph  ->  ps )
mpnanrd.2  |-  ( ph  ->  -.  ( ps  /\  ch ) )
Assertion
Ref Expression
mpnanrd  |-  ( ph  ->  -.  ch )

Proof of Theorem mpnanrd
StepHypRef Expression
1 mpnanrd.1 . 2  |-  ( ph  ->  ps )
2 mpnanrd.2 . . 3  |-  ( ph  ->  -.  ( ps  /\  ch ) )
3 imnan 438 . . 3  |-  ( ( ps  ->  -.  ch )  <->  -.  ( ps  /\  ch ) )
42, 3sylibr 224 . 2  |-  ( ph  ->  ( ps  ->  -.  ch ) )
51, 4mpd 15 1  |-  ( ph  ->  -.  ch )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by:  onsucuni3  33215
  Copyright terms: Public domain W3C validator