Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucuni3 Structured version   Visualization version   Unicode version

Theorem onsucuni3 33215
Description: If an ordinal number has a predecessor, then it is successor of that predecessor. (Contributed by ML, 17-Oct-2020.)
Assertion
Ref Expression
onsucuni3  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  B  =  suc  U. B )

Proof of Theorem onsucuni3
StepHypRef Expression
1 eloni 5733 . . . . 5  |-  ( B  e.  On  ->  Ord  B )
213ad2ant1 1082 . . . 4  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  Ord  B )
3 orduniorsuc 7030 . . . 4  |-  ( Ord 
B  ->  ( B  =  U. B  \/  B  =  suc  U. B ) )
42, 3syl 17 . . 3  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  ( B  =  U. B  \/  B  =  suc  U. B ) )
54orcomd 403 . 2  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  ( B  =  suc  U. B  \/  B  =  U. B ) )
6 simp2 1062 . . 3  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  B  =/=  (/) )
7 df-lim 5728 . . . . . . . 8  |-  ( Lim 
B  <->  ( Ord  B  /\  B  =/=  (/)  /\  B  =  U. B ) )
87biimpri 218 . . . . . . 7  |-  ( ( Ord  B  /\  B  =/=  (/)  /\  B  = 
U. B )  ->  Lim  B )
983expb 1266 . . . . . 6  |-  ( ( Ord  B  /\  ( B  =/=  (/)  /\  B  = 
U. B ) )  ->  Lim  B )
109con3i 150 . . . . 5  |-  ( -. 
Lim  B  ->  -.  ( Ord  B  /\  ( B  =/=  (/)  /\  B  = 
U. B ) ) )
11103ad2ant3 1084 . . . 4  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  -.  ( Ord  B  /\  ( B  =/=  (/)  /\  B  = 
U. B ) ) )
122, 11mpnanrd 33178 . . 3  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  -.  ( B  =/=  (/)  /\  B  = 
U. B ) )
136, 12mpnanrd 33178 . 2  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  -.  B  =  U. B )
14 orcom 402 . . 3  |-  ( ( B  =  suc  U. B  \/  B  =  U. B )  <->  ( B  =  U. B  \/  B  =  suc  U. B ) )
15 df-or 385 . . 3  |-  ( ( B  =  U. B  \/  B  =  suc  U. B )  <->  ( -.  B  =  U. B  ->  B  =  suc  U. B
) )
1614, 15sylbb 209 . 2  |-  ( ( B  =  suc  U. B  \/  B  =  U. B )  ->  ( -.  B  =  U. B  ->  B  =  suc  U. B ) )
175, 13, 16sylc 65 1  |-  ( ( B  e.  On  /\  B  =/=  (/)  /\  -.  Lim  B )  ->  B  =  suc  U. B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   U.cuni 4436   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729
This theorem is referenced by:  1oequni2o  33216  rdgsucuni  33217  finxpreclem4  33231
  Copyright terms: Public domain W3C validator