Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbmpt22g Structured version   Visualization version   Unicode version

Theorem csbmpt22g 33177
Description: Move class substitution in and out of maps-to notation for operations. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbmpt22g  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( y  e.  Y ,  z  e.  Z  |->  D )  =  ( y  e. 
[_ A  /  x ]_ Y ,  z  e. 
[_ A  /  x ]_ Z  |->  [_ A  /  x ]_ D ) )
Distinct variable groups:    y, A    z, A    y, V    z, V    x, y    x, z
Allowed substitution hints:    A( x)    D( x, y, z)    V( x)    Y( x, y, z)    Z( x, y, z)

Proof of Theorem csbmpt22g
Dummy variable  d is distinct from all other variables.
StepHypRef Expression
1 csboprabg 33176 . . 3  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. <.
y ,  z >. ,  d >.  |  ( ( y  e.  Y  /\  z  e.  Z
)  /\  d  =  D ) }  =  { <. <. y ,  z
>. ,  d >.  | 
[. A  /  x ]. ( ( y  e.  Y  /\  z  e.  Z )  /\  d  =  D ) } )
2 sbcan 3478 . . . . 5  |-  ( [. A  /  x ]. (
( y  e.  Y  /\  z  e.  Z
)  /\  d  =  D )  <->  ( [. A  /  x ]. (
y  e.  Y  /\  z  e.  Z )  /\  [. A  /  x ]. d  =  D
) )
3 sbcan 3478 . . . . . . 7  |-  ( [. A  /  x ]. (
y  e.  Y  /\  z  e.  Z )  <->  (
[. A  /  x ]. y  e.  Y  /\  [. A  /  x ]. z  e.  Z
) )
4 sbcel12 3983 . . . . . . . . 9  |-  ( [. A  /  x ]. y  e.  Y  <->  [_ A  /  x ]_ y  e.  [_ A  /  x ]_ Y )
5 csbconstg 3546 . . . . . . . . . 10  |-  ( A  e.  V  ->  [_ A  /  x ]_ y  =  y )
65eleq1d 2686 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ y  e.  [_ A  /  x ]_ Y  <->  y  e.  [_ A  /  x ]_ Y ) )
74, 6syl5bb 272 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  Y  <->  y  e.  [_ A  /  x ]_ Y ) )
8 sbcel12 3983 . . . . . . . . 9  |-  ( [. A  /  x ]. z  e.  Z  <->  [_ A  /  x ]_ z  e.  [_ A  /  x ]_ Z )
9 csbconstg 3546 . . . . . . . . . 10  |-  ( A  e.  V  ->  [_ A  /  x ]_ z  =  z )
109eleq1d 2686 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [_ A  /  x ]_ z  e.  [_ A  /  x ]_ Z  <->  z  e.  [_ A  /  x ]_ Z ) )
118, 10syl5bb 272 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  Z  <->  z  e.  [_ A  /  x ]_ Z ) )
127, 11anbi12d 747 . . . . . . 7  |-  ( A  e.  V  ->  (
( [. A  /  x ]. y  e.  Y  /\  [. A  /  x ]. z  e.  Z
)  <->  ( y  e. 
[_ A  /  x ]_ Y  /\  z  e.  [_ A  /  x ]_ Z ) ) )
133, 12syl5bb 272 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( y  e.  Y  /\  z  e.  Z
)  <->  ( y  e. 
[_ A  /  x ]_ Y  /\  z  e.  [_ A  /  x ]_ Z ) ) )
14 sbceq2g 3990 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. d  =  D  <->  d  =  [_ A  /  x ]_ D ) )
1513, 14anbi12d 747 . . . . 5  |-  ( A  e.  V  ->  (
( [. A  /  x ]. ( y  e.  Y  /\  z  e.  Z
)  /\  [. A  /  x ]. d  =  D )  <->  ( ( y  e.  [_ A  /  x ]_ Y  /\  z  e.  [_ A  /  x ]_ Z )  /\  d  =  [_ A  /  x ]_ D ) ) )
162, 15syl5bb 272 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ( y  e.  Y  /\  z  e.  Z )  /\  d  =  D )  <->  ( (
y  e.  [_ A  /  x ]_ Y  /\  z  e.  [_ A  /  x ]_ Z )  /\  d  =  [_ A  /  x ]_ D ) ) )
1716oprabbidv 6709 . . 3  |-  ( A  e.  V  ->  { <. <.
y ,  z >. ,  d >.  |  [. A  /  x ]. (
( y  e.  Y  /\  z  e.  Z
)  /\  d  =  D ) }  =  { <. <. y ,  z
>. ,  d >.  |  ( ( y  e. 
[_ A  /  x ]_ Y  /\  z  e.  [_ A  /  x ]_ Z )  /\  d  =  [_ A  /  x ]_ D ) } )
181, 17eqtrd 2656 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ { <. <.
y ,  z >. ,  d >.  |  ( ( y  e.  Y  /\  z  e.  Z
)  /\  d  =  D ) }  =  { <. <. y ,  z
>. ,  d >.  |  ( ( y  e. 
[_ A  /  x ]_ Y  /\  z  e.  [_ A  /  x ]_ Z )  /\  d  =  [_ A  /  x ]_ D ) } )
19 df-mpt2 6655 . . 3  |-  ( y  e.  Y ,  z  e.  Z  |->  D )  =  { <. <. y ,  z >. ,  d
>.  |  ( (
y  e.  Y  /\  z  e.  Z )  /\  d  =  D
) }
2019csbeq2i 3993 . 2  |-  [_ A  /  x ]_ ( y  e.  Y ,  z  e.  Z  |->  D )  =  [_ A  /  x ]_ { <. <. y ,  z >. ,  d
>.  |  ( (
y  e.  Y  /\  z  e.  Z )  /\  d  =  D
) }
21 df-mpt2 6655 . 2  |-  ( y  e.  [_ A  /  x ]_ Y ,  z  e.  [_ A  /  x ]_ Z  |->  [_ A  /  x ]_ D )  =  { <. <. y ,  z >. ,  d
>.  |  ( (
y  e.  [_ A  /  x ]_ Y  /\  z  e.  [_ A  /  x ]_ Z )  /\  d  =  [_ A  /  x ]_ D ) }
2218, 20, 213eqtr4g 2681 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ ( y  e.  Y ,  z  e.  Z  |->  D )  =  ( y  e. 
[_ A  /  x ]_ Y ,  z  e. 
[_ A  /  x ]_ Z  |->  [_ A  /  x ]_ D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   [.wsbc 3435   [_csb 3533   {coprab 6651    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-nul 3916  df-oprab 6654  df-mpt2 6655
This theorem is referenced by:  csbfinxpg  33225
  Copyright terms: Public domain W3C validator