Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nalf Structured version   Visualization version   Unicode version

Theorem nalf 32402
Description: Not all sets hold F. as true. (Contributed by Anthony Hart, 13-Sep-2011.)
Assertion
Ref Expression
nalf  |-  -.  A. x F.

Proof of Theorem nalf
StepHypRef Expression
1 alnof 32401 . 2  |-  A. x  -. F.
2 falim 1498 . . 3  |-  ( F. 
->  -.  A. x  -. F.  )
32sps 2055 . 2  |-  ( A. x F.  ->  -.  A. x  -. F.  )
41, 3mt2 191 1  |-  -.  A. x F.
Colors of variables: wff setvar class
Syntax hints:   -. wn 3   A.wal 1481   F. wfal 1488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-tru 1486  df-fal 1489  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator