| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > falim | Structured version Visualization version Unicode version | ||
| Description: The truth value |
| Ref | Expression |
|---|---|
| falim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1490 |
. 2
| |
| 2 | 1 | pm2.21i 116 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-tru 1486 df-fal 1489 |
| This theorem is referenced by: falimd 1499 falimtru 1516 tbw-bijust 1623 tbw-negdf 1624 tbw-ax4 1628 merco1 1638 merco2 1661 csbprc 3980 csbprcOLD 3981 ralnralall 4080 tgcgr4 25426 frgrregord013 27253 nalf 32402 imsym1 32417 consym1 32419 dissym1 32420 unisym1 32422 exisym1 32423 bj-falor2 32570 orfa1 33886 orfa2 33887 bifald 33888 botel 33906 lindslinindsimp2 42252 |
| Copyright terms: Public domain | W3C validator |