HomeHome Metamath Proof Explorer
Theorem List (p. 325 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 32401-32500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremalnof 32401 For all sets, F. is not true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  A. x  -. F.
 
Theoremnalf 32402 Not all sets hold F. as true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  -.  A. x F.
 
Theoremextt 32403 There exists a set that holds T. as true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  E. x T.
 
Theoremnextnt 32404 There does not exist a set, such that T. is not true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  -.  E. x  -. T.
 
Theoremnextf 32405 There does not exist a set, such that F. is true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  -.  E. x F.
 
Theoremunnf 32406 There does not exist exactly one set, such that F. is true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  -.  E! x F.
 
Theoremunnt 32407 There does not exist exactly one set, such that T. is true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  -.  E! x T.
 
Theoremmont 32408 There does not exist at most one set, such that T. is true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  -.  E* x T.
 
Theoremmof 32409 There exist at most one set, such that F. is true. (Contributed by Anthony Hart, 13-Sep-2011.)
 |-  E* x F.
 
20.10.3  Misc. Single Axiom Systems
 
Theoremmeran1 32410 A single axiom for propositional calculus offered by Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
 |-  ( -.  ( -.  ( -.  ph  \/  ps )  \/  ( ch  \/  ( th  \/  ta ) ) )  \/  ( -.  ( -.  th  \/  ph )  \/  ( ch 
 \/  ( ta  \/  ph ) ) ) )
 
Theoremmeran2 32411 A single axiom for propositional calculus offered by Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
 |-  ( -.  ( -.  ( -.  ph  \/  ps )  \/  ( ch  \/  ( th  \/  ta ) ) )  \/  ( -.  ( -.  ta  \/  th )  \/  ( ch 
 \/  ( ph  \/  th ) ) ) )
 
Theoremmeran3 32412 A single axiom for propositional calculus offered by Meredith. (Contributed by Anthony Hart, 13-Aug-2011.)
 |-  ( -.  ( -.  ( -.  ph  \/  ps )  \/  ( ch  \/  ( th  \/  ta ) ) )  \/  ( -.  ( -.  ch  \/  ph )  \/  ( ta 
 \/  ( th  \/  ph ) ) ) )
 
Theoremwaj-ax 32413 A single axiom for propositional calculus offered by Wajsberg. (Contributed by Anthony Hart, 13-Aug-2011.)
 |-  (
 ( ph  -/\  ( ps  -/\  ch ) )  -/\  ( ( ( th  -/\ 
 ch )  -/\  (
 ( ph  -/\  th )  -/\  ( ph  -/\  th )
 ) )  -/\  ( ph  -/\  ( ph  -/\  ps )
 ) ) )
 
Theoremlukshef-ax2 32414 A single axiom for propositional calculus offered by Lukasiewicz. (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  (
 ( ph  -/\  ( ps  -/\  ch ) )  -/\  ( ( ph  -/\  ( ch  -/\  ph ) )  -/\  ( ( th  -/\  ps )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
 ) ) ) )
 
Theoremarg-ax 32415 ? (Contributed by Anthony Hart, 14-Aug-2011.)
 |-  (
 ( ph  -/\  ( ps  -/\  ch ) )  -/\  ( ( ph  -/\  ( ps  -/\  ch ) ) 
 -/\  ( ( th  -/\ 
 ch )  -/\  (
 ( ch  -/\  th )  -/\  ( ph  -/\  th )
 ) ) ) )
 
20.10.4  Connective Symmetry
 
Theoremnegsym1 32416 In the paper "On Variable Functors of Propositional Arguments", Lukasiewicz introduced a system that can handle variable connectives. This was done by introducing a variable, marked with a lowercase delta, which takes a wff as input. In the system, "delta  ph " means that "something is true of 
ph." "delta  ph " can be substituted with  -.  ph,  ps  /\ 
ph,  A. x ph, etc.

Later on, Meredith discovered a single axiom, in the form of  ( delta delta F.  -> delta  ph  ). This represents the shortest theorem in the extended propositional calculus that cannot be derived as an instance of a theorem in propositional calculus.

A symmetry with  -.. (Contributed by Anthony Hart, 4-Sep-2011.)

 |-  ( -.  -. F.  ->  -.  ph )
 
Theoremimsym1 32417 A symmetry with  ->.

See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

 |-  (
 ( ps  ->  ( ps  -> F.  ) )  ->  ( ps  ->  ph )
 )
 
Theorembisym1 32418 A symmetry with 
<->.

See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

 |-  (
 ( ps  <->  ( ps  <-> F.  ) )  ->  ( ps  <->  ph ) )
 
Theoremconsym1 32419 A symmetry with  /\.

See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

 |-  (
 ( ps  /\  ( ps  /\ F.  ) ) 
 ->  ( ps  /\  ph )
 )
 
Theoremdissym1 32420 A symmetry with  \/.

See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

 |-  (
 ( ps  \/  ( ps  \/ F.  ) ) 
 ->  ( ps  \/  ph ) )
 
Theoremnandsym1 32421 A symmetry with  -/\.

See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

 |-  (
 ( ps  -/\  ( ps  -/\ F.  ) ) 
 ->  ( ps  -/\  ph )
 )
 
Theoremunisym1 32422 A symmetry with  A..

See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)

 |-  ( A. x A. x F.  ->  A. x ph )
 
Theoremexisym1 32423 A symmetry with  E..

See negsym1 32416 for more information. (Contributed by Anthony Hart, 4-Sep-2011.)

 |-  ( E. x E. x F.  ->  E. x ph )
 
Theoremunqsym1 32424 A symmetry with  E!.

See negsym1 32416 for more information. (Contributed by Anthony Hart, 6-Sep-2011.)

 |-  ( E! x E! x F.  ->  E! x ph )
 
Theoremamosym1 32425 A symmetry with  E*.

See negsym1 32416 for more information. (Contributed by Anthony Hart, 13-Sep-2011.)

 |-  ( E* x E* x F.  ->  E* x ph )
 
Theoremsubsym1 32426 A symmetry with  [ x  / 
y ].

See negsym1 32416 for more information. (Contributed by Anthony Hart, 11-Sep-2011.)

 |-  ( [ x  /  y ] [ x  /  y ] F.  ->  [ x  /  y ] ph )
 
20.11  Mathbox for Chen-Pang He
 
20.11.1  Ordinal topology
 
Theoremontopbas 32427 An ordinal number is a topological basis. (Contributed by Chen-Pang He, 8-Oct-2015.)
 |-  ( B  e.  On  ->  B  e.  TopBases )
 
Theoremonsstopbas 32428 The class of ordinal numbers is a subclass of the class of topological bases. (Contributed by Chen-Pang He, 8-Oct-2015.)
 |-  On  C_  TopBases
 
Theoremonpsstopbas 32429 The class of ordinal numbers is a proper subclass of the class of topological bases. (Contributed by Chen-Pang He, 9-Oct-2015.)
 |-  On  C.  TopBases
 
Theoremontgval 32430 The topology generated from an ordinal number  B is 
suc  U. B. (Contributed by Chen-Pang He, 10-Oct-2015.)
 |-  ( B  e.  On  ->  (
 topGen `  B )  = 
 suc  U. B )
 
Theoremontgsucval 32431 The topology generated from a successor ordinal number is itself. (Contributed by Chen-Pang He, 11-Oct-2015.)
 |-  ( A  e.  On  ->  (
 topGen `  suc  A )  =  suc  A )
 
Theoremonsuctop 32432 A successor ordinal number is a topology. (Contributed by Chen-Pang He, 11-Oct-2015.)
 |-  ( A  e.  On  ->  suc 
 A  e.  Top )
 
Theoremonsuctopon 32433 One of the topologies on an ordinal number is its successor. (Contributed by Chen-Pang He, 7-Nov-2015.)
 |-  ( A  e.  On  ->  suc 
 A  e.  (TopOn `  A ) )
 
Theoremordtoplem 32434 Membership of the class of successor ordinals. (Contributed by Chen-Pang He, 1-Nov-2015.)
 |-  ( U. A  e.  On  ->  suc  U. A  e.  S )   =>    |-  ( Ord  A  ->  ( A  =/=  U. A  ->  A  e.  S ) )
 
Theoremordtop 32435 An ordinal is a topology iff it is not its supremum (union), proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 1-Nov-2015.)
 |-  ( Ord  J  ->  ( J  e.  Top  <->  J  =/=  U. J ) )
 
Theoremonsucconni 32436 A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
 |-  A  e.  On   =>    |- 
 suc  A  e. Conn
 
Theoremonsucconn 32437 A successor ordinal number is a connected topology. (Contributed by Chen-Pang He, 16-Oct-2015.)
 |-  ( A  e.  On  ->  suc 
 A  e. Conn )
 
Theoremordtopconn 32438 An ordinal topology is connected. (Contributed by Chen-Pang He, 1-Nov-2015.)
 |-  ( Ord  J  ->  ( J  e.  Top  <->  J  e. Conn ) )
 
Theoremonintopssconn 32439 An ordinal topology is connected, expressed in constants. (Contributed by Chen-Pang He, 16-Oct-2015.)
 |-  ( On  i^i  Top )  C_ Conn
 
Theoremonsuct0 32440 A successor ordinal number is a T0 space. (Contributed by Chen-Pang He, 8-Nov-2015.)
 |-  ( A  e.  On  ->  suc 
 A  e.  Kol2 )
 
Theoremordtopt0 32441 An ordinal topology is T0. (Contributed by Chen-Pang He, 8-Nov-2015.)
 |-  ( Ord  J  ->  ( J  e.  Top  <->  J  e.  Kol2 )
 )
 
Theoremonsucsuccmpi 32442 The successor of a successor ordinal number is a compact topology, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 18-Oct-2015.)
 |-  A  e.  On   =>    |- 
 suc  suc  A  e.  Comp
 
Theoremonsucsuccmp 32443 The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.)
 |-  ( A  e.  On  ->  suc 
 suc  A  e.  Comp )
 
Theoremlimsucncmpi 32444 The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
 |-  Lim  A   =>    |-  -. 
 suc  A  e.  Comp
 
Theoremlimsucncmp 32445 The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015.)
 |-  ( Lim  A  ->  -.  suc  A  e.  Comp )
 
Theoremordcmp 32446 An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is  1o. (Contributed by Chen-Pang He, 1-Nov-2015.)
 |-  ( Ord  A  ->  ( A  e.  Comp 
 <->  ( U. A  =  U.
 U. A  ->  A  =  1o ) ) )
 
Theoremssoninhaus 32447 The ordinal topologies  1o and  2o are Hausdorff. (Contributed by Chen-Pang He, 10-Nov-2015.)
 |-  { 1o ,  2o }  C_  ( On  i^i  Haus )
 
Theoremonint1 32448 The ordinal T1 spaces are  1o and  2o, proven without the Axiom of Regularity. (Contributed by Chen-Pang He, 9-Nov-2015.)
 |-  ( On  i^i  Fre )  =  { 1o ,  2o }
 
Theoremoninhaus 32449 The ordinal Hausdorff spaces are 
1o and  2o. (Contributed by Chen-Pang He, 10-Nov-2015.)
 |-  ( On  i^i  Haus )  =  { 1o ,  2o }
 
20.12  Mathbox for Jeff Hoffman
 
20.12.1  Inferences for finite induction on generic function values
 
Theoremfveleq 32450 Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
 |-  ( A  =  B  ->  ( ( ph  ->  ( F `  A )  e.  P )  <->  ( ph  ->  ( F `  B )  e.  P ) ) )
 
Theoremfindfvcl 32451* Please add description here. (Contributed by Jeff Hoffman, 12-Feb-2008.)
 |-  ( ph  ->  ( F `  (/) )  e.  P )   &    |-  ( y  e.  om  ->  (
 ph  ->  ( ( F `
  y )  e.  P  ->  ( F ` 
 suc  y )  e.  P ) ) )   =>    |-  ( A  e.  om  ->  (
 ph  ->  ( F `  A )  e.  P ) )
 
Theoremfindreccl 32452* Please add description here. (Contributed by Jeff Hoffman, 19-Feb-2008.)
 |-  (
 z  e.  P  ->  ( G `  z )  e.  P )   =>    |-  ( C  e.  om 
 ->  ( A  e.  P  ->  ( rec ( G ,  A ) `  C )  e.  P ) )
 
Theoremfindabrcl 32453* Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.)
 |-  (
 z  e.  P  ->  ( G `  z )  e.  P )   =>    |-  ( ( C  e.  om  /\  A  e.  P )  ->  (
 ( x  e.  _V  |->  ( rec ( G ,  A ) `  x ) ) `  C )  e.  P )
 
20.12.2  gdc.mm
 
Theoremnnssi2 32454 Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
 |-  NN  C_  D   &    |-  ( B  e.  NN  ->  ph )   &    |-  ( ( A  e.  D  /\  B  e.  D  /\  ph )  ->  ps )   =>    |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ps )
 
Theoremnnssi3 32455 Convert a theorem for real/complex numbers into one for positive integers. (Contributed by Jeff Hoffman, 17-Jun-2008.)
 |-  NN  C_  D   &    |-  ( C  e.  NN  ->  ph )   &    |-  ( ( ( A  e.  D  /\  B  e.  D  /\  C  e.  D )  /\  ph )  ->  ps )   =>    |-  (
 ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ps )
 
Theoremnndivsub 32456 Please add description here. (Contributed by Jeff Hoffman, 17-Jun-2008.)
 |-  (
 ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A  /  C )  e.  NN  /\  A  <  B ) )  ->  ( ( B  /  C )  e. 
 NN 
 <->  ( ( B  -  A )  /  C )  e.  NN ) )
 
Theoremnndivlub 32457 A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.)
 |-  (
 ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  /  B )  e.  NN  ->  B  <_  A )
 )
 
SyntaxcgcdOLD 32458 Extend class notation to include the gdc function. (New usage is discouraged.)
 class  gcdOLD ( A ,  B )
 
Definitiondf-gcdOLD 32459*  gcdOLD ( A ,  B ) is the largest positive integer that evenly divides both  A and  B. (Contributed by Jeff Hoffman, 17-Jun-2008.) (New usage is discouraged.)
 |-  gcdOLD ( A ,  B )  =  sup ( { x  e.  NN  |  ( ( A  /  x )  e.  NN  /\  ( B  /  x )  e. 
 NN ) } ,  NN ,  <  )
 
Theoremee7.2aOLD 32460 Lemma for Euclid's Elements, Book 7, proposition 2. The original mentions the smaller measure being 'continually subtracted' from the larger. Many authors interpret this phrase as  A mod  B. Here, just one subtraction step is proved to preserve the  gcdOLD. The  rec function will be used in other proofs for iterated subtraction. (Contributed by Jeff Hoffman, 17-Jun-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  (
 ( A  e.  NN  /\  B  e.  NN )  ->  ( A  <  B  ->  gcdOLD ( A ,  B )  = 
 gcdOLD ( A ,  ( B  -  A ) ) ) )
 
20.13  Mathbox for Asger C. Ipsen
 
20.13.1  Continuous nowhere differentiable functions
 
Theoremdnival 32461* Value of the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   =>    |-  ( A  e.  RR  ->  ( T `  A )  =  ( abs `  ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) )
 
Theoremdnicld1 32462 Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( abs `  ( ( |_ `  ( A  +  (
 1  /  2 )
 ) )  -  A ) )  e.  RR )
 
Theoremdnicld2 32463* Closure theorem for the "distance to nearest integer" function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( T `  A )  e. 
 RR )
 
Theoremdnif 32464 The "distance to nearest integer" function is a function. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   =>    |-  T : RR --> RR
 
Theoremdnizeq0 32465* The distance to nearest integer is zero for integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  ( T `  A )  =  0 )
 
Theoremdnizphlfeqhlf 32466* The distance to nearest integer is a half for half-integers. (Contributed by Asger C. Ipsen, 15-Jun-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  ZZ )   =>    |-  ( ph  ->  ( T `  ( A  +  ( 1  /  2
 ) ) )  =  ( 1  /  2
 ) )
 
Theoremrddif2 32467 Variant of rddif 14080. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( A  e.  RR  ->  0 
 <_  ( ( 1  / 
 2 )  -  ( abs `  ( ( |_ `  ( A  +  (
 1  /  2 )
 ) )  -  A ) ) ) )
 
Theoremdnibndlem1 32468* Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( ( abs `  (
 ( T `  B )  -  ( T `  A ) ) ) 
 <_  S  <->  ( abs `  (
 ( abs `  ( ( |_ `  ( B  +  ( 1  /  2
 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  ( 1  /  2
 ) ) )  -  A ) ) ) )  <_  S )
 )
 
Theoremdnibndlem2 32469* Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( |_ `  ( B  +  ( 1  /  2 ) ) )  =  ( |_ `  ( A  +  (
 1  /  2 )
 ) ) )   =>    |-  ( ph  ->  ( abs `  ( ( T `  B )  -  ( T `  A ) ) )  <_  ( abs `  ( B  -  A ) ) )
 
Theoremdnibndlem3 32470 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( |_ `  ( B  +  ( 1  /  2 ) ) )  =  ( ( |_ `  ( A  +  ( 1  / 
 2 ) ) )  +  1 ) )   =>    |-  ( ph  ->  ( abs `  ( B  -  A ) )  =  ( abs `  ( ( B  -  ( ( |_ `  ( B  +  (
 1  /  2 )
 ) )  -  (
 1  /  2 )
 ) )  +  (
 ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  +  ( 1 
 /  2 ) )  -  A ) ) ) )
 
Theoremdnibndlem4 32471 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( B  e.  RR  ->  0 
 <_  ( B  -  (
 ( |_ `  ( B  +  ( 1  /  2 ) ) )  -  ( 1 
 /  2 ) ) ) )
 
Theoremdnibndlem5 32472 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( A  e.  RR  ->  0  <  ( ( ( |_ `  ( A  +  ( 1  / 
 2 ) ) )  +  ( 1  / 
 2 ) )  -  A ) )
 
Theoremdnibndlem6 32473 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( abs `  ( ( abs `  ( ( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) ) )  <_  ( ( ( 1 
 /  2 )  -  ( abs `  ( ( |_ `  ( B  +  ( 1  /  2
 ) ) )  -  B ) ) )  +  ( ( 1 
 /  2 )  -  ( abs `  ( ( |_ `  ( A  +  ( 1  /  2
 ) ) )  -  A ) ) ) ) )
 
Theoremdnibndlem7 32474 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  (
 ( 1  /  2
 )  -  ( abs `  ( ( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) ) )  <_  ( B  -  ( ( |_ `  ( B  +  (
 1  /  2 )
 ) )  -  (
 1  /  2 )
 ) ) )
 
Theoremdnibndlem8 32475 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  (
 ( 1  /  2
 )  -  ( abs `  ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) )  <_  (
 ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  +  ( 1 
 /  2 ) )  -  A ) )
 
Theoremdnibndlem9 32476* Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( |_ `  ( B  +  ( 1  /  2 ) ) )  =  ( ( |_ `  ( A  +  ( 1  / 
 2 ) ) )  +  1 ) )   =>    |-  ( ph  ->  ( abs `  ( ( T `  B )  -  ( T `  A ) ) )  <_  ( abs `  ( B  -  A ) ) )
 
Theoremdnibndlem10 32477 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  +  2 ) 
 <_  ( |_ `  ( B  +  ( 1  /  2 ) ) ) )   =>    |-  ( ph  ->  1  <_  ( B  -  A ) )
 
Theoremdnibndlem11 32478 Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( abs `  ( ( abs `  ( ( |_ `  ( B  +  ( 1  /  2 ) ) )  -  B ) )  -  ( abs `  ( ( |_ `  ( A  +  ( 1  /  2 ) ) )  -  A ) ) ) )  <_  ( 1  /  2
 ) )
 
Theoremdnibndlem12 32479* Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( ( |_ `  ( A  +  (
 1  /  2 )
 ) )  +  2 )  <_  ( |_ `  ( B  +  (
 1  /  2 )
 ) ) )   =>    |-  ( ph  ->  ( abs `  ( ( T `  B )  -  ( T `  A ) ) )  <_  ( abs `  ( B  -  A ) ) )
 
Theoremdnibndlem13 32480* Lemma for dnibnd 32481. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  ( |_ `  ( A  +  ( 1  /  2 ) ) )  <_  ( |_ `  ( B  +  (
 1  /  2 )
 ) ) )   =>    |-  ( ph  ->  ( abs `  ( ( T `  B )  -  ( T `  A ) ) )  <_  ( abs `  ( B  -  A ) ) )
 
Theoremdnibnd 32481* The "distance to nearest integer" function is Lipshitz continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( abs `  ( ( T `  B )  -  ( T `  A ) ) )  <_  ( abs `  ( B  -  A ) ) )
 
Theoremdnicn 32482 The "distance to nearest integer" function is continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   =>    |-  T  e.  ( RR -cn-> RR )
 
Theoremknoppcnlem1 32483* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.)
 |-  F  =  ( y  e.  RR  |->  ( n  e.  NN0  |->  ( ( C ^ n )  x.  ( T `  ( ( ( 2  x.  N ) ^ n )  x.  y
 ) ) ) ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   =>    |-  ( ph  ->  (
 ( F `  A ) `  M )  =  ( ( C ^ M )  x.  ( T `  ( ( ( 2  x.  N ) ^ M )  x.  A ) ) ) )
 
Theoremknoppcnlem2 32484* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   =>    |-  ( ph  ->  (
 ( C ^ M )  x.  ( T `  ( ( ( 2  x.  N ) ^ M )  x.  A ) ) )  e. 
 RR )
 
Theoremknoppcnlem3 32485* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   =>    |-  ( ph  ->  (
 ( F `  A ) `  M )  e. 
 RR )
 
Theoremknoppcnlem4 32486* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   =>    |-  ( ph  ->  ( abs `  ( ( F `
  A ) `  M ) )  <_  ( ( m  e. 
 NN0  |->  ( ( abs `  C ) ^ m ) ) `  M ) )
 
Theoremknoppcnlem5 32487* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `
  m ) ) ) : NN0 --> ( CC 
 ^m  RR ) )
 
Theoremknoppcnlem6 32488* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( abs `  C )  <  1 )   =>    |-  ( ph  ->  seq 0
 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `  m ) ) ) )  e.  dom  ( ~~> u `  RR ) )
 
Theoremknoppcnlem7 32489* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   =>    |-  ( ph  ->  (  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e. 
 RR  |->  ( ( F `
  z ) `  m ) ) ) ) `  M )  =  ( w  e. 
 RR  |->  (  seq 0
 (  +  ,  ( F `  w ) ) `
  M ) ) )
 
Theoremknoppcnlem8 32490* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  seq 0
 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `  m ) ) ) ) : NN0 --> ( CC 
 ^m  RR ) )
 
Theoremknoppcnlem9 32491* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  W  =  ( w  e.  RR  |->  sum_
 i  e.  NN0  (
 ( F `  w ) `  i ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( abs `  C )  <  1 )   =>    |-  ( ph  ->  seq 0 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e. 
 RR  |->  ( ( F `
  z ) `  m ) ) ) ) ( ~~> u `  RR ) W )
 
Theoremknoppcnlem10 32492* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  M  e.  NN0 )   =>    |-  ( ph  ->  (
 z  e.  RR  |->  ( ( F `  z
 ) `  M )
 )  e.  ( (
 topGen `  ran  (,) )  Cn  ( TopOpen ` fld ) ) )
 
Theoremknoppcnlem11 32493* Lemma for knoppcn 32494. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   =>    |-  ( ph  ->  seq 0
 (  oF  +  ,  ( m  e.  NN0  |->  ( z  e.  RR  |->  ( ( F `  z ) `  m ) ) ) ) : NN0 --> ( RR
 -cn-> CC ) )
 
Theoremknoppcn 32494* The continuous nowhere differentiable function  W ( Knopp, K. (1918). Math. Z. 2, 1-26 ) is, in fact, continuous. (Contributed by Asger C. Ipsen, 4-Apr-2021.) (Revised by Asger C. Ipsen, 5-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  W  =  ( w  e.  RR  |->  sum_
 i  e.  NN0  (
 ( F `  w ) `  i ) )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( abs `  C )  <  1 )   =>    |-  ( ph  ->  W  e.  ( RR -cn-> CC ) )
 
Theoremknoppcld 32495* Closure theorem for Knopp's function. (Contributed by Asger C. Ipsen, 26-Jul-2021.)
 |-  T  =  ( x  e.  RR  |->  ( abs `  ( ( |_ `  ( x  +  ( 1  /  2
 ) ) )  -  x ) ) )   &    |-  F  =  ( y  e.  RR  |->  ( n  e. 
 NN0  |->  ( ( C ^ n )  x.  ( T `  (
 ( ( 2  x.  N ) ^ n )  x.  y ) ) ) ) )   &    |-  W  =  ( w  e.  RR  |->  sum_
 i  e.  NN0  (
 ( F `  w ) `  i ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  ( abs `  C )  < 
 1 )   =>    |-  ( ph  ->  ( W `  A )  e. 
 CC )
 
Theoremaddgtge0d 32496 Addition of positive and nonnegative numbers is positive. (Contributed by Asger C. Ipsen, 12-May-2021.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  0  <_  B )   =>    |-  ( ph  ->  0  <  ( A  +  B ) )
 
Theoremunblimceq0lem 32497* Lemma for unblimceq0 32498. (Contributed by Asger C. Ipsen, 12-May-2021.)
 |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  F : S --> CC )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A. b  e.  RR+  A. d  e.  RR+  E. x  e.  S  ( ( abs `  ( x  -  A ) )  <  d  /\  b  <_  ( abs `  ( F `  x ) ) ) )   =>    |-  ( ph  ->  A. c  e.  RR+  A. d  e.  RR+  E. y  e.  S  ( y  =/=  A  /\  ( abs `  ( y  -  A ) )  < 
 d  /\  c  <_  ( abs `  ( F `  y ) ) ) )
 
Theoremunblimceq0 32498* If  F is unbounded near  A it has no limit at  A. (Contributed by Asger C. Ipsen, 12-May-2021.)
 |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  F : S --> CC )   &    |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  A. b  e.  RR+  A. d  e.  RR+  E. x  e.  S  ( ( abs `  ( x  -  A ) )  <  d  /\  b  <_  ( abs `  ( F `  x ) ) ) )   =>    |-  ( ph  ->  ( F lim CC  A )  =  (/) )
 
Theoremunbdqndv1 32499* If the difference quotient  ( (
( F `  z
)  -  ( F `
 A ) )  /  ( z  -  A ) ) is unbounded near  A then  F is not differentiable at  A. (Contributed by Asger C. Ipsen, 12-May-2021.)
 |-  G  =  ( z  e.  ( X  \  { A }
 )  |->  ( ( ( F `  z )  -  ( F `  A ) )  /  ( z  -  A ) ) )   &    |-  ( ph  ->  S  C_  CC )   &    |-  ( ph  ->  X  C_  S )   &    |-  ( ph  ->  F : X --> CC )   &    |-  ( ph  ->  A. b  e.  RR+  A. d  e.  RR+  E. x  e.  ( X  \  { A } ) ( ( abs `  ( x  -  A ) )  < 
 d  /\  b  <_  ( abs `  ( G `  x ) ) ) )   =>    |-  ( ph  ->  -.  A  e.  dom  ( S  _D  F ) )
 
Theoremunbdqndv2lem1 32500 Lemma for unbdqndv2 32502. (Contributed by Asger C. Ipsen, 12-May-2021.)
 |-  ( ph  ->  A  e.  CC )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  C  e.  CC )   &    |-  ( ph  ->  D  e.  CC )   &    |-  ( ph  ->  E  e.  RR+ )   &    |-  ( ph  ->  D  =/=  0 )   &    |-  ( ph  ->  ( 2  x.  E )  <_  ( abs `  ( ( A  -  B )  /  D ) ) )   =>    |-  ( ph  ->  ( ( E  x.  ( abs `  D ) )  <_  ( abs `  ( A  -  C ) )  \/  ( E  x.  ( abs `  D ) )  <_  ( abs `  ( B  -  C ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >