MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nic-ax Structured version   Visualization version   Unicode version

Theorem nic-ax 1598
Description: Nicod's axiom derived from the standard ones. See Introduction to Mathematical Philosophy by B. Russell, p. 152. Like meredith 1566, the usual axioms can be derived from this and vice versa. Unlike meredith 1566, Nicod uses a different connective ('nand'), so another form of modus ponens must be used in proofs, e.g.  { nic-ax 1598, nic-mp 1596 
} is equivalent to  { luk-1 1580, luk-2 1581, luk-3 1582, ax-mp 5  }. In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to an axiom ($a statement). (Contributed by Jeff Hoffman, 19-Nov-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nic-ax  |-  ( (
ph  -/\  ( ch  -/\  ps ) )  -/\  (
( ta  -/\  ( ta  -/\  ta ) ) 
-/\  ( ( th 
-/\  ch )  -/\  (
( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )

Proof of Theorem nic-ax
StepHypRef Expression
1 nannan 1451 . . . . 5  |-  ( (
ph  -/\  ( ch  -/\  ps ) )  <->  ( ph  ->  ( ch  /\  ps ) ) )
21biimpi 206 . . . 4  |-  ( (
ph  -/\  ( ch  -/\  ps ) )  ->  ( ph  ->  ( ch  /\  ps ) ) )
3 simpl 473 . . . . 5  |-  ( ( ch  /\  ps )  ->  ch )
43imim2i 16 . . . 4  |-  ( (
ph  ->  ( ch  /\  ps ) )  ->  ( ph  ->  ch ) )
5 imnan 438 . . . . . . 7  |-  ( ( th  ->  -.  ch )  <->  -.  ( th  /\  ch ) )
6 df-nan 1448 . . . . . . 7  |-  ( ( th  -/\  ch )  <->  -.  ( th  /\  ch ) )
75, 6bitr4i 267 . . . . . 6  |-  ( ( th  ->  -.  ch )  <->  ( th  -/\  ch )
)
8 con3 149 . . . . . . . 8  |-  ( (
ph  ->  ch )  -> 
( -.  ch  ->  -. 
ph ) )
98imim2d 57 . . . . . . 7  |-  ( (
ph  ->  ch )  -> 
( ( th  ->  -. 
ch )  ->  ( th  ->  -.  ph ) ) )
10 imnan 438 . . . . . . . 8  |-  ( (
ph  ->  -.  th )  <->  -.  ( ph  /\  th ) )
11 con2b 349 . . . . . . . 8  |-  ( ( th  ->  -.  ph )  <->  (
ph  ->  -.  th )
)
12 df-nan 1448 . . . . . . . 8  |-  ( (
ph  -/\  th )  <->  -.  ( ph  /\  th ) )
1310, 11, 123bitr4ri 293 . . . . . . 7  |-  ( (
ph  -/\  th )  <->  ( th  ->  -.  ph ) )
149, 13syl6ibr 242 . . . . . 6  |-  ( (
ph  ->  ch )  -> 
( ( th  ->  -. 
ch )  ->  ( ph  -/\  th ) ) )
157, 14syl5bir 233 . . . . 5  |-  ( (
ph  ->  ch )  -> 
( ( th  -/\  ch )  ->  ( ph  -/\  th )
) )
16 nanim 1452 . . . . 5  |-  ( ( ( th  -/\  ch )  ->  ( ph  -/\  th )
)  <->  ( ( th 
-/\  ch )  -/\  (
( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) )
1715, 16sylib 208 . . . 4  |-  ( (
ph  ->  ch )  -> 
( ( th  -/\  ch )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) )
182, 4, 173syl 18 . . 3  |-  ( (
ph  -/\  ( ch  -/\  ps ) )  ->  (
( th  -/\  ch )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) )
19 pm4.24 675 . . . . 5  |-  ( ta  <->  ( ta  /\  ta )
)
2019biimpi 206 . . . 4  |-  ( ta 
->  ( ta  /\  ta ) )
21 nannan 1451 . . . 4  |-  ( ( ta  -/\  ( ta  -/\ 
ta ) )  <->  ( ta  ->  ( ta  /\  ta ) ) )
2220, 21mpbir 221 . . 3  |-  ( ta 
-/\  ( ta  -/\  ta ) )
2318, 22jctil 560 . 2  |-  ( (
ph  -/\  ( ch  -/\  ps ) )  ->  (
( ta  -/\  ( ta  -/\  ta ) )  /\  ( ( th 
-/\  ch )  -/\  (
( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )
24 nannan 1451 . 2  |-  ( ( ( ph  -/\  ( ch  -/\  ps ) ) 
-/\  ( ( ta 
-/\  ( ta  -/\  ta ) )  -/\  (
( th  -/\  ch )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )  <-> 
( ( ph  -/\  ( ch  -/\  ps ) )  ->  ( ( ta 
-/\  ( ta  -/\  ta ) )  /\  (
( th  -/\  ch )  -/\  ( ( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) ) )
2523, 24mpbir 221 1  |-  ( (
ph  -/\  ( ch  -/\  ps ) )  -/\  (
( ta  -/\  ( ta  -/\  ta ) ) 
-/\  ( ( th 
-/\  ch )  -/\  (
( ph  -/\  th )  -/\  ( ph  -/\  th )
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    -/\ wnan 1447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-nan 1448
This theorem is referenced by:  nic-imp  1600  nic-idlem1  1601  nic-idlem2  1602  nic-id  1603  nic-swap  1604  nic-luk1  1616  lukshef-ax1  1619
  Copyright terms: Public domain W3C validator